Marsh Page
09/01/2023 · High School

How do you rotate 270 degrees counterclockwise about the origin? What is the rule for rotating 270 degrees about the origin? 

Solución de tutoría real

Respuesta verificada por el tutor

Respuesta rápida

To rotate a point 270 degrees counterclockwise about the origin, you use the rule \(( x, y) \rightarrow ( y, - x) \).

Solución paso a paso

1. Understanding Rotation: 

Rotating a point 270 degrees counterclockwise about the origin is equivalent to rotating it 90 degrees clockwise. 
2. Rule: 

The general rule for rotating a point \(( x, y) \) 270 degrees counterclockwise about the origin is: 
\[( x, y) \rightarrow ( y, - x) \]
3. Example: 

If you have a point \(( 3, 4) \)
\[( 3, 4) \rightarrow ( 4, - 3) \] 4. Explanation: 

This transformation swaps the coordinates and changes the sign of the new x-coordinate, effectively rotating the point 270 degrees counterclockwise.

 

Supplemental Knowledge:

Rotating a point or a shape in the coordinate plane involves turning it around a fixed point, typically the origin (0,0). When rotating points counterclockwise, specific rules apply based on the angle of rotation.

Rule for Rotating 270 Degrees Counterclockwise About the Origin:

To rotate a point \(( x, y) \) 270 degrees counterclockwise about the origin, you can use the following transformation rule:

The coordinates of the point after rotation will be \(( y, - x) \).

This rule is derived from understanding how each quadrant shifts during a 270-degree rotation: 
1. A 90-degree counterclockwise rotation transforms \(( x, y) \) to \(( - y, x) \)
2. A 180-degree counterclockwise rotation transforms \(( x, y) \) to \(( - x, - y) \)
3. A 270-degree counterclockwise rotation (or equivalently a 90-degree clockwise rotation) transforms \(( x, y) \) to \(( y, - x) \).

 

Theory in Practice:

Understanding rotations is integral for many real-world applications. If you're designing an animation where a character must move smoothly from side to side, being familiar with rotational transformations allows you to accurately program their movements and produce smooth animations.

 

To master concepts like geometric transformations or explore other intriguing topics in mathematics, check out UpStudy’s live tutor question bank! Our AI-powered problem-solving services provide detailed explanations and insights across various subjects—including a Geometry calculator!

Whether you're preparing for exams or simply passionate about learning more about geometry and algebraic transformations, UpStudy offers comprehensive resources tailored to your educational needs. Discover how UpStudy can support your academic journey today!

Revisado y aprobado por el equipo de tutoría de UpStudy
Estudio de ThothAI
Autodesarrollado y en constante mejora
El producto Thoth AI se actualiza y optimiza constantemente.
Cubre todos los temas principales
Capaz de manejar tareas de matemáticas, química, biología, física y más.
Instantáneo y preciso
Proporciona soluciones y orientación inmediatas y precisas.
Probar ahora
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto

Introduce tu pregunta aquí…

Por imagen
Volver a cargar
Archivos subidos
xxxx.png0%
Enviar
📸 EL ESTUDIO PUEDE SER UNA VERDADERA LUCHA
Por qué no UpStudy It?
Seleccione su plan a continuación
Prima

Puedes disfrutar

  • Paso a paso explicaciones
  • Experto 24/7 tutores en vivo
  • Ilimitado número de preguntas
  • Sin interrupciones
  • Acceso completo para responder y
    solución
  • Acceso completo para chat en PDF, chat en UpStudy, chat de navegación
Básico
  • Limitado Soluciones