Q:
A standardized exam's scores are normally distributed. In a recent year, the mean test score was 1543 and the standard deviation was 319 . The
test scores of four students selected at random are 1990, 1260, 2240, and 1430. Find the \( z \)-scores that correspond to each value and determine
whether any of the values are unusual.
The \( z \)-score for 1990 is
(Round to two decimal places as needed.)
The \( z \)-score for 1260 is
(Round to two decimal places as needed.)
The \( z \)-score for 2240 is
(Round to two decimal places as needed.)
The \( z \)-score for 1430 is
(Round to two decimal places as needed.)
Which values, if any, are unusual? Select the correct choice below and, if necessary, fill in the answer box within your choice.
A. The unusual value(s) is/are
(Use a comma to separate answers as needed.)
B. None of the values are unusual.
Q:
A convenience sample differs from a voluntary sample in that
a convenience sample is structured based on accessibility to the researcher, and a voluntary sample is based on
participant interest.
convenience samples survey each participant once, and voluntary samples survey each participant numerous
times.
convenience sampling is a method of random sampling, and a voluntary sample is not.
convenience sampling is not a probability-based method, and voluntary sampling is.
Q:
A drug tester claims that a drug cures a rare skin disease \( 74 \% \) of the time. The claim is checked by testing the drug on 100 patients. If at least 69
patients are cured, the claim will be accepted.
Find the probability that the claim will be rejected assuming that the manufacturer's claim is true. Use the normal distribution to approximate the
binomial distribution if possible.
The probability is
Q:
In the population of Betta Imbellis (wild caught bettas, the Siamese Fighting Fish). Let \( p \) be the true
proportion of those fishes that carry the green pigments in their eyes.
A) In a random sample of 102 bettas, 30 of them carry the green pigments in their eyes. Construct a(n) \( 99 \% \)
confidence interval to estimate \( p \).
\( \mathrm{z}_{\mathrm{c}}=2.5758 . \quad \) (Round to 4 decimal places)
The interval: \( 0.2941 \pm \square \) (Round \( E \) to 4 decimal places)
The interval in traditional format:
Q:
B) In a random sample of 229 bettas, 58 of them carry the green pigments in their eyes. Construct a(n) \( 99 \% \)
confidence interval to estimate \( p \).
\( z_{c}=2.5758 \quad \) (Round to 4 decimal places)
The interval: \( 0.2533 \pm \square \) (Round \( E \) to 4 decimal places)
The interval in traditional format: ( )
Q:
luena de un centro comercial desea estimar el promedio del valor de venta de los maleti
tiene en su inventario. Un muestra aleatoria de 12 maletines dio un valor promedio
(en miles de pesos) y una desviación estándar de 11,1 . Suponiendo que la población
ios se distribuye normalmente, calcule un intervalo de \( 95 \% \) de confianza para el va
enta promedio de todos los maletines en cuestión.
Q:
24. Sea una variable aleatoria que sigue una distribución normal de media 3 y desviación
tipica 0,8 . Halla el valor de a en cada caso:
\( \begin{array}{ll}\text { a) } P(X \leq 2 a)=0,5 & \text {;b) } P\left(X>\frac{a}{2}\right)=0,9991\end{array} \)
Q:
in Opname is onder 180 inwoners van 'n klein dorpie gedoen
hoeveel mense is die laaste 5 jaar met fuberkulose (TB) en/o
- \( x \) mense is gediagnoseer met TB
- 30 mense is gediagnoseer met beide TB en MIV
- 59 mense was MIV positief
7.2.1 Teken in Venn-diagram om dic gegetvens te illustreer
7.2.2 Hoeveel mense het slegs TB opgedoen?
(a) Slegs met TB gediagnoseer is
(b) Met geeneen van die twee siektes gediagnoseer
Q:
24. Sea una variable aleatoria que sigue una distribución normal de media 3 y desviación
tipica 0,8 . Halla el valor de a en cada caso:
\( \begin{array}{ll}\text { a) } P(X \leq 2 a)=0,5 & \text {;b) } P\left(X>\frac{a}{2}\right)=0,9991\end{array} \)
Q:
In a random sample of 396 adult (age 25 or over) US Citizens, 122 of them hold a Bachelor's degree, Let \( p \)
be the true proportion of adult US Citizens that hold a Bachelor's degree.
A) Construct a \( 89 \% \) confidence Interval to estimate \( p \).
\( z_{\mathrm{c}}=\square \) (Round to 4 decimal places)
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto
Introduce tu pregunta aquí…
Por imagen
Volver a cargar
Enviar