Q:
14. \( \tan v+\operatorname{cotan} v=\sec v \operatorname{cosec} v \)
15. \( \operatorname{sen}^{2} v \cos ^{2} v+\cos ^{4} v=\cos ^{2} v \)
Q:
\( \begin{aligned} \text { a) } \quad \sin x & =0 \\ 0 & \leqslant x \\ 0 & \leqslant x \\ 0 & \leqslant 360^{\circ}\end{aligned} \)
Q:
5. \( \operatorname{sen} v \operatorname{cotan} v=\cos v \)
6. \( \operatorname{sen} v \tan v+\cos v=\sec v \)
7. \( \operatorname{csec} v-\operatorname{sen} v=\operatorname{cotan} v \cos v \)
8. \( (\operatorname{sen} v+\cos v)^{2}+(\operatorname{sen} v-\cos v)^{2}=2 \)
9. \( (\operatorname{sen} v+\operatorname{cosec} v)^{2}=\operatorname{sen}^{2} v+\operatorname{cotan}^{2} v+3 \)
10. \( \sec ^{4} v-\sec ^{2} v=\tan ^{4} v-\tan ^{2} v \)
11. \( \left(\sec ^{2} v+\cos ^{2} v\right)\left(\sec v-\cos ^{2} v\right)=\tan ^{2} v+\operatorname{sen}^{2} v \)
12. \( \left(1+\tan ^{2} v\right) \cos ^{2} v=1 \)
Q:
Sin utilizar tablas ni calculadora, calcula
y simplifica:
a) \( 3 \operatorname{sen} 30^{\circ}+6 \cos 45^{\circ} \)
b) \( \operatorname{sen}^{2} 45^{\circ}+\cos ^{2} 45^{\circ} \)
c) \( \tan ^{2} 60^{\circ}-\sec ^{2} 60^{\circ} \)
d) \( \frac{\cos 60^{\circ}+\cos 30^{\circ}}{\csc ^{2} 30^{\circ}+\operatorname{sen}^{2} 45^{\circ}} \)
Q:
Sin utilizar tablas ni calculadora, calcula
y simplifica:
a) \( 3 \operatorname{sen} 30^{\circ}+6 \cos 45^{\circ} \)
b) \( \operatorname{sen}^{2} 45^{\circ}+\cos ^{2} 45^{\circ} \)
c) \( \tan ^{2} 60^{\circ}-\sec ^{2} 60^{\circ} \)
d) \( \frac{\cos 60^{\circ}+\cos 30^{\circ}}{\csc ^{2} 30^{\circ}+\operatorname{sen}^{2} 45^{\circ}} \)
Q:
IDENTIDADES TRIGONOMÉTRICAS
Demostrar las siguientes identidades
1. \( \cos \vee \tan v=\operatorname{sen} \downarrow \)
2. \( \cot \downarrow \cdot \tan v=1 \)
3. \( \operatorname{sen} \downarrow \cot v+\cos v \tan v=\operatorname{sen} v+\cos v \)
Q:
4) \( \operatorname{Si} \tan \Phi=\frac{\sqrt{6}}{3} \), donde " \( \Phi \) " es un ángulo agudo, calcular:
\( P=\sqrt{3} \operatorname{Sec} \Phi+\sqrt{2} \operatorname{Csc} \Phi \)
Q:
Use the sum or difference formula for tangent to find the exact value for \( \tan \left(-165^{\circ}\right) \)
\( \tan \left(-165^{\circ}\right)=\square \)
Q:
Simplify and write the trigonometric expression in terms of sine and cosine:
\( \frac{2+\tan ^{2} x}{\sec ^{2} x}-1=g(x) \)
\( g(x)= \)
Q:
\&. Du vet attcosv = 0,55. Beräkna vinkeln.
Pon a prueba tus conocimientos sobre Trigonometría!
Seleccione la respuesta correcta y verifique su respuesta
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto
Introduce tu pregunta aquí…
Por imagen
Volver a cargar
Enviar