Question
upstudy study bank question image url

uelva la ecuación diferencial \( x \frac{d y}{d x}-5 y=x^{2} \). Seleccione la solución general:

Ask by Ruiz Elliott. in Ecuador
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La solución general de la ecuación diferencial \( x \frac{d y}{d x} - 5 y = x^{2} \) es: \[ y(x) = -\frac{1}{3} x^{2} + C x^{5} \] donde \( C \) es una constante arbitraria.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Bonus Knowledge

Para resolver la ecuación diferencial \( x \frac{d y}{d x}-5 y=x^{2} \), primero podemos reorganizar la ecuación como: \[ \frac{d y}{d x} - \frac{5}{x} y = x. \] Esta es una ecuación diferencial lineal de primer orden, y podemos aplicar el método de factores integrantes. El factor integrante \( \mu(x) \) se calcula como: \[ \mu(x) = e^{\int -\frac{5}{x} \, dx} = e^{-5 \ln|x|} = |x|^{-5}. \] Multiplicamos toda la ecuación por el factor integrante: \[ |x|^{-5} \frac{dy}{dx} - \frac{5}{x} |x|^{-5} y = |x|^{-5} x. \] Esto simplifica a: \[ \frac{d}{dx} (|x|^{-5} y) = |x|^{-4}. \] Integrando ambos lados obtenemos: \[ |x|^{-5} y = \int |x|^{-4} \, dx = -\frac{1}{3} |x|^{-3} + C, \] donde \( C \) es una constante de integración. Finalmente, multiplicamos por \( |x|^5 \) para despejar \( y \): \[ y = -\frac{1}{3} |x|^2 + C |x|^5. \] La solución general de la ecuación diferencial es: \[ y = -\frac{1}{3} x^2 + C x^5, \] donde \( C \) es una constante arbitraria.

Related Questions

Latest Calculus Questions

Find \( \lim _{x \rightarrow 0^{+}}\left(e^{-1 / x} \sin (1 / x)-(x+2)^{3}\right) \) (if it exists) and give a careful argument showing that your answer is correct. The notation lim the uniqueness of limits. Prove that limits, if they exist, are indeed unique. That is, the suppose that \( f \) is a real valued function of a real variable, \( a \) is an accumulation point of the domain of \( f \), and \( \ell, m \in \mathbb{R} \). Prove that if \( f(x) \rightarrow \ell \) as \( x \rightarrow a \) and \( f(x) \rightarrow m \) as \( x \rightarrow a \), then \( l=m \). (Explain carefully why it was important that we require \( a \) to be an accumulation point of the domain of \( f \).) Let \( f(x)=\frac{\sin \pi x}{x+1} \) for all \( x \neq-1 \). The following information is known about a function \( g \) defined for all real numbers \( x \neq 1 \) : (i) \( g=\frac{p}{q} \) where \( p(x)=a x^{2}+b x+c \) and \( q(x)=d x+e \) for some constants \( a, b, c, d, e \); (ii) the only \( x \)-intercept of the curve \( y=g(x) \) occurs at the origin; (iii) \( g(x) \geq 0 \) on the interval \( [0,1) \) and is negative elsewhere on its domain; (iv) \( g \) has a vertical asymptote at \( x=1 \); and (v) \( g(1 / 2)=3 \). Either find lim \( g(x) f(x) \) or else show that this limit does not exist. Hints. Write an explicit formula for \( g \) by determining the constants \( a \ldots e \). Use (ii) to find \( c \); use (ii) and (iii) to find \( a \); use (iv) to find a relationship between \( d \) and \( e \); then use (v) to obtain an explicit form for \( g \). Finally look at \( f(x) g(x) \); replace sin \( \pi x \) by sin( \( (x(x-1)+\pi) \) and use the formula for the sine of the sum of two numbers.
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy