Problem 8: Let \( f(x)=3 x^{3}-2 x^{2}+x \) on the interval \( [-1,2] \). . Apply the MVT to find the value(s) of \( c \) in \( (-1,2) \) where \( f^{\prime}(c)=\frac{f(2)-f(-1)}{2-(-1)} \).
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To find the values of \( c \) using the Mean Value Theorem (MVT), we begin by calculating \( f(2) \) and \( f(-1) \). First, we evaluate: \[ f(2) = 3(2)^3 - 2(2)^2 + 2 = 3(8) - 2(4) + 2 = 24 - 8 + 2 = 18 \] \[ f(-1) = 3(-1)^3 - 2(-1)^2 + (-1) = 3(-1) - 2(1) - 1 = -3 - 2 - 1 = -6 \] Next, we calculate \( \frac{f(2) - f(-1)}{2 - (-1)} \): \[ \frac{f(2) - f(-1)}{2 - (-1)} = \frac{18 - (-6)}{2 + 1} = \frac{18 + 6}{3} = \frac{24}{3} = 8 \] Now, we need to find \( f'(x) \) and set it equal to 8: \[ f(x) = 3x^3 - 2x^2 + x \] Calculating the derivative: \[ f'(x) = 9x^2 - 4x + 1 \] Setting \( f'(c) = 8 \): \[ 9c^2 - 4c + 1 = 8 \] \[ 9c^2 - 4c - 7 = 0 \] Now, we will use the quadratic formula, \( c = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ c = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(9)(-7)}}{2(9)} = \frac{4 \pm \sqrt{16 + 252}}{18} = \frac{4 \pm \sqrt{268}}{18} = \frac{4 \pm 2\sqrt{67}}{18} = \frac{2 \pm \sqrt{67}}{9} \] Calculating the approximate values of these roots, we find: \[ c_1 = \frac{2 + \sqrt{67}}{9} \quad \text{and} \quad c_2 = \frac{2 - \sqrt{67}}{9} \] Now, evaluating \(\sqrt{67} \approx 8.19\), we calculate: \[ c_1 \approx \frac{2 + 8.19}{9} \approx \frac{10.19}{9} \approx 1.13 \] \[ c_2 \approx \frac{2 - 8.19}{9} \approx \frac{-6.19}{9} \approx -0.69 \] Since \( c \) needs to be in the interval \( (-1,2) \), both \( c_1 \approx 1.13 \) and \( c_2 \approx -0.69 \) are valid solutions. Thus, the values of \( c \) are approximately: \[ c \approx 1.13, -0.69 \]