Question
upstudy study bank question image url

Problem 8: Let \( f(x)=3 x^{3}-2 x^{2}+x \) on the interval \( [-1,2] \). . Apply the MVT to find the value(s) of \( c \) in \( (-1,2) \) where \( f^{\prime}(c)=\frac{f(2)-f(-1)}{2-(-1)} \).

Ask by Lane Dawson. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The values of \( c \) in \((-1, 2)\) that satisfy the Mean Value Theorem are \( c = \frac{2 + \sqrt{67}}{9} \) and \( c = \frac{2 - \sqrt{67}}{9} \).

Solution

To apply the Mean Value Theorem (MVT) to the function \( f(x) = 3x^3 - 2x^2 + x \) on the interval \([-1, 2]\), follow these steps: ### **1. Verify the Conditions for MVT** - **Continuity:** \( f(x) \) is a polynomial, so it is continuous on \([-1, 2]\). - **Differentiability:** Since \( f(x) \) is a polynomial, it is differentiable on \((-1, 2)\). ### **2. Apply the Mean Value Theorem** According to the MVT, there exists at least one \( c \) in \((-1, 2)\) such that: \[ f'(c) = \frac{f(2) - f(-1)}{2 - (-1)} \] ### **3. Compute \( f(2) \) and \( f(-1) \)** \[ f(2) = 3(2)^3 - 2(2)^2 + 2 = 24 - 8 + 2 = 18 \] \[ f(-1) = 3(-1)^3 - 2(-1)^2 + (-1) = -3 - 2 - 1 = -6 \] ### **4. Calculate the Average Rate of Change** \[ \frac{f(2) - f(-1)}{2 - (-1)} = \frac{18 - (-6)}{3} = \frac{24}{3} = 8 \] ### **5. Find \( f'(x) \) and Solve for \( c \)** First, find the derivative \( f'(x) \): \[ f'(x) = 9x^2 - 4x + 1 \] Set \( f'(c) = 8 \): \[ 9c^2 - 4c + 1 = 8 \\ 9c^2 - 4c - 7 = 0 \] ### **6. Solve the Quadratic Equation** \[ c = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 9 \cdot (-7)}}{2 \cdot 9} = \frac{4 \pm \sqrt{16 + 252}}{18} = \frac{4 \pm \sqrt{268}}{18} \] Simplify the square root: \[ \sqrt{268} = 2\sqrt{67} \] Thus, \[ c = \frac{4 \pm 2\sqrt{67}}{18} = \frac{2 \pm \sqrt{67}}{9} \] ### **7. Verify \( c \) is in \((-1, 2)\)** Calculate approximate values: \[ \sqrt{67} \approx 8.185 \] \[ c_1 = \frac{2 + 8.185}{9} \approx 1.132 \quad (\text{within } (-1, 2)) \] \[ c_2 = \frac{2 - 8.185}{9} \approx -0.687 \quad (\text{within } (-1, 2)) \] Both values of \( c \) lie within the interval \((-1, 2)\). ### **Final Answer** The values of \( c \) in \((-1, 2)\) satisfying the Mean Value Theorem are: \[ c = \frac{2 + \sqrt{67}}{9} \quad \text{and} \quad c = \frac{2 - \sqrt{67}}{9} \] **Answer:** After simplifying, the values c are (2 ± √67) divided by 9. Thus, c = (2 ± √67)/9

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To find the values of \( c \) using the Mean Value Theorem (MVT), we begin by calculating \( f(2) \) and \( f(-1) \). First, we evaluate: \[ f(2) = 3(2)^3 - 2(2)^2 + 2 = 3(8) - 2(4) + 2 = 24 - 8 + 2 = 18 \] \[ f(-1) = 3(-1)^3 - 2(-1)^2 + (-1) = 3(-1) - 2(1) - 1 = -3 - 2 - 1 = -6 \] Next, we calculate \( \frac{f(2) - f(-1)}{2 - (-1)} \): \[ \frac{f(2) - f(-1)}{2 - (-1)} = \frac{18 - (-6)}{2 + 1} = \frac{18 + 6}{3} = \frac{24}{3} = 8 \] Now, we need to find \( f'(x) \) and set it equal to 8: \[ f(x) = 3x^3 - 2x^2 + x \] Calculating the derivative: \[ f'(x) = 9x^2 - 4x + 1 \] Setting \( f'(c) = 8 \): \[ 9c^2 - 4c + 1 = 8 \] \[ 9c^2 - 4c - 7 = 0 \] Now, we will use the quadratic formula, \( c = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ c = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(9)(-7)}}{2(9)} = \frac{4 \pm \sqrt{16 + 252}}{18} = \frac{4 \pm \sqrt{268}}{18} = \frac{4 \pm 2\sqrt{67}}{18} = \frac{2 \pm \sqrt{67}}{9} \] Calculating the approximate values of these roots, we find: \[ c_1 = \frac{2 + \sqrt{67}}{9} \quad \text{and} \quad c_2 = \frac{2 - \sqrt{67}}{9} \] Now, evaluating \(\sqrt{67} \approx 8.19\), we calculate: \[ c_1 \approx \frac{2 + 8.19}{9} \approx \frac{10.19}{9} \approx 1.13 \] \[ c_2 \approx \frac{2 - 8.19}{9} \approx \frac{-6.19}{9} \approx -0.69 \] Since \( c \) needs to be in the interval \( (-1,2) \), both \( c_1 \approx 1.13 \) and \( c_2 \approx -0.69 \) are valid solutions. Thus, the values of \( c \) are approximately: \[ c \approx 1.13, -0.69 \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy