Pregunta
upstudy study bank question image url

Use the limit comparison test to determine if
converges or diverges, and justify your answer.
Answer Attempt 2 out of 2
Apply the comparison test with the series where
I. If and , then .
Since and the limit is a finite and positive (non-zero)
number, the limit comparison test applies. diverges
since a p-series will diverge if and only if
. Therefore,

Ask by Chang Zimmerman. in the United States
Mar 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The series diverges.

Solución

Let
and choose the comparison series
Step 1. Determine the dominant behavior of for large .
For large :
  • The numerator is .
  • The denominator is dominated by the term (since and as ).
Thus, for large ,
This motivates the choice .
Step 2. Compute the limit of the ratio .
We have:
Factor from the denominator:
Taking the limit as :
Since the limit is a finite positive number ( ), by the limit comparison test, and have the same convergence behavior.
Step 3. Analyze the convergence of the -series .
The series converges if and only if . In our case, , which means
diverges.
Conclusion:
By the limit comparison test, the series
diverges.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To apply the limit comparison test effectively, we start by simplifying . As becomes very large, the dominant term in the denominator will be . So, we can approximate our series as:
Next, comparing this with where , we have:
This limit approaches infinity, which means we need to reconsider the comparison: let’s take . Since is a p-series where , it diverges.
Thus, also diverges. So, we conclude that:
diverges as well! 🎉

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad