Pregunta
upstudy study bank question image url

7:21 PM Wed Jan 29 \( 22 \% \) Emilio Mejia Felic... G. 4 Unions and intersections of sets Video 05:28 Let \( J=\{x \mid x \geq-2\} \) and \( K=\{x \mid x<6\} \). What is \( J \cup K \) ? \[ \{-2,-1,0,1,2,3,4,5\} \] \[ \{x \mid-2 \leq x<6\} \] \( \{x \mid x \) is a real number \( \} \) Not ready yet?

Ask by Washington Davey. in Puerto Rico
Jan 29,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( J \cup K = \{x \mid -2 \leq x < 6\} \)

Solución

To find the union of the sets \( J \) and \( K \), we first need to understand what each set represents. 1. **Set \( J \)**: \[ J = \{x \mid x \geq -2\} \] This means that \( J \) includes all real numbers that are greater than or equal to \(-2\). In interval notation, this can be expressed as: \[ J = [-2, \infty) \] 2. **Set \( K \)**: \[ K = \{x \mid x < 6\} \] This means that \( K \) includes all real numbers that are less than \( 6 \). In interval notation, this can be expressed as: \[ K = (-\infty, 6) \] 3. **Union of Sets \( J \) and \( K \)**: The union of two sets \( J \) and \( K \), denoted \( J \cup K \), includes all elements that are in either \( J \) or \( K \) or in both. To find \( J \cup K \), we combine the intervals: - The left endpoint of \( J \) is \(-2\) and it extends to infinity. - The right endpoint of \( K \) is \(6\) and it extends from negative infinity. Therefore, the union can be expressed as: \[ J \cup K = [-2, \infty) \cup (-\infty, 6) = (-\infty, 6) \cup [-2, \infty) \] Since \(-2\) is included in \( J \) and \( K \) extends to \(6\) but does not include it, we can express the union in interval notation as: \[ J \cup K = \{x \mid -2 \leq x < 6\} \] Thus, the correct answer is: \[ \{x \mid -2 \leq x < 6\} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

When you're dealing with the union of sets, think of it as a way to combine all the unique elements from both sets without any duplicates. In this example, you can visualize \( J \) as all the real numbers starting from -2 and going to infinity, while \( K \) includes numbers less than 6. So, when you take their union \( J \cup K \), you cover all real numbers that are greater than or equal to -2 and less than 6—leading you to the set \( \{x \mid -2 \leq x < 6\} \). In real-world applications, the concepts of unions and intersections can be used in everyday situations like organizing your events. For example, if you have a set of friends who love sports and another set who love movies, their union would give you a complete list of friends who enjoy at least one activity, perfect for deciding what event to host next—whether that's a movie night or a sports match!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad