Pregunta
upstudy study bank question image url

In the \( x y \)-plane, the points \( (-2,3) \) and \( (4,-5) \) lie on the graph of which of the following linear functions? A. \( f(x)=x+5 \) B. \( f(x)=\frac{1}{2} x+4 \) C. \( f(x)=-\frac{4}{3} x+\frac{1}{3} \) D. \( f(x)=-\frac{3}{2} x+1 \)

Ask by Hammond Byrd. in the United States
Feb 06,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correct linear function is \( f(x) = -\frac{4}{3}x + \frac{1}{3} \), which is option C.

Solución

To determine which linear function passes through both points \((-2, 3)\) and \((4, -5)\), let's start by finding the equation of the line that connects these two points. 1. **Calculate the slope (\(m\)) of the line:** \[ m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-5 - 3}{4 - (-2)} = \frac{-8}{6} = -\frac{4}{3} \] 2. **Use the slope-point form to find the equation of the line:** Using the point \((-2, 3)\): \[ y - y_1 = m(x - x_1) \implies y - 3 = -\frac{4}{3}(x + 2) \] Simplifying: \[ y = -\frac{4}{3}x - \frac{8}{3} + 3 = -\frac{4}{3}x + \frac{1}{3} \] So, the equation of the line is: \[ f(x) = -\frac{4}{3}x + \frac{1}{3} \] 3. **Verify with the given options:** - **Option C:** \( f(x) = -\frac{4}{3}x + \frac{1}{3} \) This matches the equation we derived. To confirm, let's plug in both points: - For \((-2, 3)\): \[ f(-2) = -\frac{4}{3}(-2) + \frac{1}{3} = \frac{8}{3} + \frac{1}{3} = 3 \] - For \((4, -5)\): \[ f(4) = -\frac{4}{3}(4) + \frac{1}{3} = -\frac{16}{3} + \frac{1}{3} = -5 \] Both points satisfy the equation, confirming that **Option C** is correct. **Answer:** C. \( f(x)=-\frac{4}{3} x+\frac{1}{3} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine which linear function the points \( (-2,3) \) and \( (4,-5) \) lie on, we can substitute the x-coordinates of the points into each function and see if the corresponding y-coordinates match. Let's check each function: 1. **For \( A. f(x)=x+5 \):** - \( f(-2) = -2 + 5 = 3 \) (matches!) - \( f(4) = 4 + 5 = 9 \) (does not match) 2. **For \( B. f(x)=\frac{1}{2} x+4 \):** - \( f(-2) = \frac{1}{2}(-2) + 4 = -1 + 4 = 3 \) (matches!) - \( f(4) = \frac{1}{2}(4) + 4 = 2 + 4 = 6 \) (does not match) 3. **For \( C. f(x)=-\frac{4}{3} x+\frac{1}{3} \):** - \( f(-2) = -\frac{4}{3}(-2) + \frac{1}{3} = \frac{8}{3} + \frac{1}{3} = \frac{9}{3} = 3 \) (matches!) - \( f(4) = -\frac{4}{3}(4) + \frac{1}{3} = -\frac{16}{3} + \frac{1}{3} = -\frac{15}{3} = -5 \) (matches!) 4. **For \( D. f(x)=-\frac{3}{2} x+1 \):** - \( f(-2) = -\frac{3}{2}(-2) + 1 = 3 + 1 = 4 \) (does not match) - \( f(4) = -\frac{3}{2}(4) + 1 = -6 + 1 = -5 \) (matches!) The only function that both points satisfy is option **C. \( f(x)=-\frac{4}{3} x+\frac{1}{3} \)**. --- The use of coordinates in the \( xy \)-plane to represent points allows for visual representation of functions, enhancing understanding of algebraic concepts. Just imagine using a treasure map where each coordinate points to the perfect hiding spots—no gold doubloons in this case, but valuable insights! When testing points against functions, a common mistake is assuming that if one point matches a function, the other will too. Always check both to avoid missing out on the right answer; it's like checking twice before leaving on that treasure hunt!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad