Pregunta
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The general solution is:
where
and
are arbitrary constants.
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Bonus Knowledge
To solve the differential equation
we first find the complementary solution by solving the associated homogeneous equation:
The characteristic equation is:
Using the quadratic formula, we get:
Thus, the complementary solution is:
where
and
are constants.
For the particular solution
due to the forcing term
, we can try a solution of the form:
Calculating the first and second derivatives,
Substituting
,
, and
into the original equation, we get:
This simplifies to:
This yields two equations:
From the second equation
. Substituting
into the first equation gives us:
Now, the particular solution is:
Combining the complementary and particular solutions, the general solution is:

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium