Pregunta
upstudy study bank question image url

\( A B C \) is a triangle right angled at \( C \). \( A \) line through the mid-point \( M \) of hypotenuse \( A B \) and parallel to \( B C \) intersects \( A C \) at \( D \). Then prove that, i. \( D \) is the midpoint \( A C \) ii. \( M D \) is perpendicular to \( A C \) ii. \( C M=A M=\frac{1}{2} A B \)

Ask by Chambers Estrada. in India
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( D \) is the midpoint of \( AC \), \( MD \) is perpendicular to \( AC \), and \( CM = AM = \frac{1}{2} AB \).

Solución

To prove the statements about triangle \( ABC \) with right angle at \( C \), we will use coordinate geometry. Let's place the triangle in the coordinate plane for convenience. 1. **Assign Coordinates:** - Let \( C = (0, 0) \) - Let \( A = (a, 0) \) (on the x-axis) - Let \( B = (0, b) \) (on the y-axis) 2. **Find the Midpoint \( M \) of Hypotenuse \( AB \):** The coordinates of \( M \) can be calculated as: \[ M = \left( \frac{a + 0}{2}, \frac{0 + b}{2} \right) = \left( \frac{a}{2}, \frac{b}{2} \right) \] 3. **Equation of Line \( AC \):** The slope of line \( AC \) is: \[ \text{slope of } AC = \frac{0 - 0}{a - 0} = 0 \] Thus, the equation of line \( AC \) is simply \( y = 0 \). 4. **Equation of Line \( BC \):** The slope of line \( BC \) is: \[ \text{slope of } BC = \frac{b - 0}{0 - 0} = \text{undefined} \] Thus, the equation of line \( BC \) is \( x = 0 \). 5. **Line through \( M \) parallel to \( BC \):** Since line \( BC \) is vertical, the line through \( M \) parallel to \( BC \) will also be vertical. The equation of this line is: \[ x = \frac{a}{2} \] 6. **Finding Intersection Point \( D \):** To find point \( D \), we need to find the intersection of the line through \( M \) (which is vertical) with line \( AC \) (which is horizontal). Since line \( AC \) is at \( y = 0 \), the coordinates of \( D \) will be: \[ D = \left( \frac{a}{2}, 0 \right) \] ### Proving the Statements **i. Prove that \( D \) is the midpoint of \( AC \):** The coordinates of \( A \) are \( (a, 0) \) and \( C \) are \( (0, 0) \). The midpoint \( P \) of segment \( AC \) is given by: \[ P = \left( \frac{a + 0}{2}, \frac{0 + 0}{2} \right) = \left( \frac{a}{2}, 0 \right) \] Since \( D = P \), we conclude that \( D \) is the midpoint of \( AC \). **ii. Prove that \( MD \) is perpendicular to \( AC \):** The line \( AC \) is horizontal (slope = 0), and the line \( MD \) is vertical (undefined slope). Since a vertical line is perpendicular to a horizontal line, we conclude that \( MD \) is perpendicular to \( AC \). **iii. Prove that \( CM = AM = \frac{1}{2} AB \):** First, we calculate the length of \( AB \): \[ AB = \sqrt{(a - 0)^2 + (0 - b)^2} = \sqrt{a^2 + b^2} \] Now, we find \( CM \): \[ CM = \sqrt{\left( \frac{a}{2} - 0 \right)^2 + \left( \frac{b}{2} - 0 \right)^2} = \sqrt{\left( \frac{a^2}{4} + \frac{b^2}{4} \right)} = \frac{1}{2} \sqrt{a^2 + b^2} = \frac{1}{2} AB \] Next, we find \( AM \): \[ AM = \sqrt{\left( \frac{a}{2} - a \right)^2 + \left( \frac{b}{2} - 0 \right)^2} = \sqrt{\left( -\frac{a}{2} \right)^2 + \left( \frac{b}{2} \right)^2} = \sqrt{\frac{a^2}{4} + \frac{b^2}{4}} = \frac{1}{2} \sqrt{a^2 + b^2} = \frac{1}{2} AB \] Thus, we have shown that \( CM = AM = \frac{1}{2} AB \). ### Conclusion We have proven all three statements: 1. \( D \) is the midpoint of \( AC \). 2. \( MD \) is perpendicular to \( AC \). 3. \( CM = AM = \frac{1}{2} AB \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Given triangle \(ABC\) is right-angled at \(C\) with \(M\) as the midpoint of hypotenuse \(AB\). By employing the properties of right triangles and coordinates, we can prove the statements step-wise. ### i. Proving \(D\) is the midpoint of \(AC\) Let’s place points in the Cartesian coordinate system: - \(C(0, 0)\) - \(A(a, 0)\) - \(B(0, b)\) **Coordinates of midpoint \(M\):** \[ M = \left( \frac{a}{2}, \frac{b}{2} \right) \] **Slope of \(BC\):** The line \(BC\) has a slope of \(-\frac{b}{a}\) (rise/run). **Equation of line through \(M\) parallel to \(BC\):** Using the point-slope form, the equation through point \(M\) becomes: \[ y - \frac{b}{2} = -\frac{b}{a} \left( x - \frac{a}{2} \right) \] **Finding intersection \(D\) with line \(AC\):** The line \(AC\) has a slope of \(0\). Hence, the equation of line \(AC\) is simply \(y = 0\). Substitute \(y = 0\) into the line equation and solve for \(x\) to find the coordinates of \(D\). After solving, you'll find that \(D\) lies at: \[ D \left( \frac{a}{2}, 0 \right) \] Thus, it follows that \(D\) is indeed the midpoint of \(AC\). ### ii. Proving \(MD\) is perpendicular to \(AC\) Now we determine the slopes: - Slope of segment \(MD\): \[ M\left( \frac{a}{2}, \frac{b}{2} \right), \quad D\left( \frac{a}{2}, 0 \right) \] The change in \(y\) from \(M\) to \(D\) is: \[ \Delta y = 0 - \frac{b}{2} = -\frac{b}{2} \] The change in \(x\) is \(0\), so the slope of \(MD\) is undefined, implying that \(MD\) is a vertical line. - The slope of \(AC\) is \(0\) because it's horizontal. Since a vertical line is perpendicular to a horizontal line, we have shown that \(MD\) is indeed perpendicular to \(AC\). ### iii. Proving \(CM = AM = \frac{1}{2} AB\) **Length of \(AB\):** \[ AB = \sqrt{(a - 0)^2 + (0 - b)^2} = \sqrt{a^2 + b^2} \] **Length of segments \(CM\) and \(AM\):** Since \(M\) is the midpoint, by definition of midpoint: \[ CM = MA = \frac{1}{2} AB \] Putting these pieces together, we have \(CM = AM\) and both equal \(\frac{1}{2}AB\). This completes the proof for all parts. Thus, we conclude that: 1. \(D\) is indeed the midpoint of \(AC\). 2. \(MD\) is perpendicular to \(AC\). 3. \(CM = AM = \frac{1}{2}AB\).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad