Pregunta

(h) The sum of the first four terms of a geometric series is equal to 45 and the sum of the first eight terms is 765. Determine the first 3 terms of the series.

Ask by Chambers King. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The first three terms of the series are 3, 6, and 12.

Solución

Let’s determine the first three terms of the geometric series given the following information: 1. **Sum of the first four terms (S₄):** \[ S_4 = a + ar + ar^2 + ar^3 = 45 \] Using the formula for the sum of the first \( n \) terms of a geometric series: \[ S_n = a \frac{1 - r^n}{1 - r} \] So, \[ 45 = a \frac{1 - r^4}{1 - r} \quad \text{(1)} \] 2. **Sum of the first eight terms (S₈):** \[ S_8 = a + ar + ar^2 + ar^3 + ar^4 + ar^5 + ar^6 + ar^7 = 765 \] Using the sum formula: \[ 765 = a \frac{1 - r^8}{1 - r} \quad \text{(2)} \] **Dividing Equation (2) by Equation (1):** \[ \frac{765}{45} = \frac{a \frac{1 - r^8}{1 - r}}{a \frac{1 - r^4}{1 - r}} \implies 17 = \frac{1 - r^8}{1 - r^4} \] Notice that \( 1 - r^8 = (1 - r^4)(1 + r^4) \), so: \[ 17 = \frac{(1 - r^4)(1 + r^4)}{1 - r^4} \implies 1 + r^4 = 17 \implies r^4 = 16 \implies r = \pm 2 \] **Case 1: \( r = 2 \)** \[ 45 = a \frac{1 - 16}{1 - 2} = a \frac{-15}{-1} = 15a \implies a = 3 \] First three terms: \[ 3, \quad 3 \times 2 = 6, \quad 6 \times 2 = 12 \] **Case 2: \( r = -2 \)** \[ 45 = a \frac{1 - 16}{1 + 2} = a \frac{-15}{3} = -5a \implies a = -9 \] First three terms: \[ -9, \quad -9 \times (-2) = 18, \quad 18 \times (-2) = -36 \] **Conclusion:** The first three terms of the series can either be \( 3, 6, 12 \) or \( -9, 18, -36 \). Assuming a positive common ratio, the first three terms are: **Answer:** The first three terms are 3, 6, and 12.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve this problem, let’s denote the first term of the geometric series as \( a \) and the common ratio as \( r \). The sum of the first four terms is given by the formula: \[ S_4 = a + ar + ar^2 + ar^3 = a(1 + r + r^2 + r^3) \] The sum of the first eight terms is: \[ S_8 = a + ar + ar^2 + ar^3 + ar^4 + ar^5 + ar^6 + ar^7 = a(1 + r + r^2 + r^3 + r^4 + r^5 + r^6 + r^7) \] We have two equations: 1. \( S_4 = a(1 + r + r^2 + r^3) = 45 \) 2. \( S_8 = a(1 + r + r^2 + r^3 + r^4 + r^5 + r^6 + r^7) = 765 \) Notice that \( S_8 \) can also be expressed in terms of \( S_4 \): \[ S_8 = S_4 + ar^4(1 + r + r^2 + r^3) = S_4 + ar^4 S_4 = S_4(1 + r^4) \] Substituting for \( S_4 \): \[ 765 = 45(1 + r^4) \] Dividing both sides by 45: \[ 17 = 1 + r^4 \] This simplifies to: \[ r^4 = 16 \implies r = 2 \] (We take the positive root since negative ratios would not keep the signs consistent in the series.) Now substituting \( r = 2 \) back into the first equation to find \( a \): \[ S_4 = a(1 + 2 + 4 + 8) = 15a = 45 \implies a = 3 \] The first three terms of the series are: 1. \( a = 3 \) 2. \( ar = 3 \cdot 2 = 6 \) 3. \( ar^2 = 3 \cdot 2^2 = 12 \) So, the first three terms of the geometric series are: **3, 6, 12.**

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad