Pregunta
upstudy study bank question image url

Determine if the function is linear, constant, or neither. Part 1 of 4 \[ h(x)=-\frac{4}{5 x}-1 \] linear constant neither linear nor constant Part 2 of 4 \( \square \) linear Check Save For Late

Ask by Allan Cook. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function \( h(x) = -\frac{4}{5x} - 1 \) is **neither linear nor constant**.

Solución

To determine whether the function \( h(x) = -\frac{4}{5x} - 1 \) is **linear**, **constant**, or **neither**, let's analyze its form. ### **Definition of Terms:** 1. **Linear Function:** - A function is **linear** if it can be expressed in the form \( h(x) = mx + b \), where \( m \) and \( b \) are constants. - The graph of a linear function is a straight line. 2. **Constant Function:** - A function is **constant** if it does not depend on \( x \) and can be written as \( h(x) = c \), where \( c \) is a constant. - The graph of a constant function is a horizontal line. ### **Analyzing \( h(x) = -\frac{4}{5x} - 1 \):** 1. **Presence of \( x \) in the Denominator:** - The term \( -\frac{4}{5x} \) involves \( x \) in the denominator, making the function a **rational function**. - Rational functions are generally **not linear** because they include terms like \( \frac{1}{x} \), \( \frac{x}{x} \) (which simplifies to a constant), or higher powers of \( x \) in the denominator. 2. **Dependence on \( x \):** - The function depends on \( x \) due to the \( \frac{1}{x} \) term, so it is **not constant**. ### **Conclusion:** Since \( h(x) \) includes a term with \( \frac{1}{x} \) and cannot be expressed in the form \( mx + b \), it is **neither linear nor constant**. **Answer:** The function \( h(x) = -\frac{4}{5x} - 1 \) is **neither linear nor constant**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine whether the function \( h(x) = -\frac{4}{5x} - 1 \) is linear, constant, or neither, we can analyze its structure. A linear function typically takes the form \( y = mx + b \), where \( m \) and \( b \) are constants. In this case, the term \(-\frac{4}{5x}\) indicates a reciprocal relationship rather than a linear one because it depends on \(x\) in the denominator. This makes the function neither linear nor constant. Moving forward, remember that a constant function has the form \( y = c \), where \( c \) is a constant value with no dependence on \( x \). If ever faced with such a function, just check for any variable presence! In your case, \( h(x) \) changes with \( x \) and has an inverse variation, marking it as not constant too!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad