Pregunta
4 Show that the maximum value of
is 4.
Ask by Weber Munoz. in South Africa
Mar 25,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The maximum value of
is 4.
Solución
-
Begin with the expression:
-
Identify the quadratic inside the square root:
-
Factor out
from the terms involving : -
Complete the square for the quadratic
: - Take half of the coefficient of
: . - Square it:
. - Add and subtract
inside the parenthesis:
- Take half of the coefficient of
-
Substitute back into
: Simplify: -
The expression for
is now: Sinceis always non-negative, the maximum value of occurs when: Thus: -
Since we are dealing with the square root of
, take the square root of the maximum value:
Therefore, the maximum value of
is
.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Bonus Knowledge
To find the maximum value of the expression
, we can first analyze the quadratic function inside the square root:
The function
is a downward-opening parabola. We can find its vertex, which gives us the maximum point. The x-coordinate of the vertex can be calculated using the formula
, where
and
.
Calculating that gives:
Now, substitute
back into the quadratic to find the maximum value:
So the maximum value inside the square root is 16. Therefore, the maximum value of
is:
So the maximum value is indeed 4, confirming the result!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium