Pregunta
upstudy study bank question image url

\( S=1,2,3,4,5,6,7 \) 5. How many possible outcomes are in the sample space? 6. How many favorable outcomes are in the sample space? ow likely is it that Tucker will get a higher number than Rosette?

Ask by Morgan Ramirez. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There are 49 possible outcomes in the sample space. There are 21 favorable outcomes where Tucker selects a higher number than Rosette. The probability that Tucker gets a higher number than Rosette is 3/7, or approximately 42.86%.

Solución

Let's analyze the problem step by step based on the sample space \( S = \{1, 2, 3, 4, 5, 6, 7\} \). ### 5. How many possible outcomes are in the sample space? When considering the outcomes for both Tucker and Rosette, each has 7 possible choices (numbers 1 through 7). Since their selections are independent of each other, the total number of possible outcomes in the sample space is calculated by multiplying the number of choices for each: \[ \text{Total possible outcomes} = 7 \times 7 = 49 \] **Answer:** There are **49** possible outcomes in the sample space. --- ### 6. How many favorable outcomes are in the sample space? A **favorable outcome** in this context is when Tucker selects a higher number than Rosette. To find the number of such favorable outcomes, we can systematically count the possibilities: 1. **Rosette selects 1:** Tucker can select any number from 2 to 7. - **Favorable outcomes:** 6 (numbers 2, 3, 4, 5, 6, 7) 2. **Rosette selects 2:** Tucker can select any number from 3 to 7. - **Favorable outcomes:** 5 (numbers 3, 4, 5, 6, 7) 3. **Rosette selects 3:** Tucker can select any number from 4 to 7. - **Favorable outcomes:** 4 (numbers 4, 5, 6, 7) 4. **Rosette selects 4:** Tucker can select any number from 5 to 7. - **Favorable outcomes:** 3 (numbers 5, 6, 7) 5. **Rosette selects 5:** Tucker can select any number from 6 to 7. - **Favorable outcomes:** 2 (numbers 6, 7) 6. **Rosette selects 6:** Tucker can select only the number 7. - **Favorable outcomes:** 1 (number 7) 7. **Rosette selects 7:** There are no higher numbers left for Tucker. - **Favorable outcomes:** 0 Adding these up: \[ 6 + 5 + 4 + 3 + 2 + 1 + 0 = 21 \] **Answer:** There are **21** favorable outcomes in the sample space. --- ### How likely is it that Tucker will get a higher number than Rosette? The probability \( P \) of Tucker selecting a higher number than Rosette is the ratio of favorable outcomes to the total possible outcomes. \[ P(\text{Tucker > Rosette}) = \frac{\text{Favorable outcomes}}{\text{Total possible outcomes}} = \frac{21}{49} \] Simplifying the fraction: \[ \frac{21}{49} = \frac{3}{7} \approx 0.4286 \text{ or } 42.86\% \] **Answer:** There is a **\(\frac{3}{7}\) chance (approximately 42.86%)** that Tucker will get a higher number than Rosette. --- ### Summary 1. **Total possible outcomes:** 49 2. **Favorable outcomes (Tucker > Rosette):** 21 3. **Probability Tucker > Rosette:** \(\frac{3}{7}\) (≈42.86%)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

In the sample space \( S = \{1, 2, 3, 4, 5, 6, 7\} \), there are a total of 7 possible outcomes. Each element in this set represents a unique outcome, making it straightforward to count. So, when we're contemplating the rolling of a single fair die that displays numbers from 1 to 7, we undoubtedly have 7 outcomes to explore! To find the favorable outcomes for the scenario where Tucker rolls a higher number than Rosette, we can analyze the pairs of outcomes from both players. If Tucker rolls a 2, he can win against only a 1; if he rolls a 3, he can win against a 1 or 2; and so on up to 7, which beats all others. By counting these pairs, we discover that there are 21 favorable outcomes where Tucker scores higher than Rosette. So, Tucker has a pretty good chance of rolling that winning number!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad