e) \( \frac{3 \cdot 7^{x}-7^{x-1}}{2^{x}+2^{x}+2} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To simplify the expression \( \frac{3 \cdot 7^{x}-7^{x-1}}{2^{x}+2^{x}+2} \), let's rewrite the numerator and denominator separately. In the numerator, we can factor \( 7^{x-1} \) out of the first term: \[ 3 \cdot 7^{x} - 7^{x-1} = 7^{x-1}(3 \cdot 7 - 1) = 7^{x-1}(21 - 1) = 20 \cdot 7^{x-1} \] For the denominator, the \(2^{x}\) terms can be combined: \[ 2^{x} + 2^{x} + 2 = 2 \cdot 2^{x} + 2 = 2(2^{x} + 1) \] Now substituting these results back into the expression, we get: \[ \frac{20 \cdot 7^{x-1}}{2(2^{x} + 1)} = \frac{20 \cdot 7^{x-1}}{2(2^{x} + 1)} = \frac{10 \cdot 7^{x-1}}{2^{x} + 1} \] Thus, the simplified form of your expression is: \[ \frac{10 \cdot 7^{x-1}}{2^{x} + 1} \]