Pregunta
upstudy study bank question image url

10 For positive real numbers , and , the lines and have equations given by
It is given that the two lines intersect each other.
(i) Show that .
[2]
(ii) Find the value of if the angle between the two lines is radians.
The equation of the plane that contains both lines is now given by .
(iii) A second plane meets in the line and contains the point . Find an equation for in scalar product form.
[2]
(iv) Hence find the angle between the planes and .
[2]
(v) The plane is parallel to the plane . Given that the distance between both planes is units and that is closer to the origin than , find a cartesian equation for .
[3]
10 (b) 4 (c) .
(d) or nearest
(e)

Ask by Bush Salazar. in Singapore
Dec 29,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Simplified Answers:
  1. Part (i):
  2. Part (ii):
  3. Part (iii):
  4. Part (iv):
  5. Part (v):

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Mind Expander

To tackle the intersection of lines and , we first need to establish their parametric forms and equate them. Given the equations for both lines, we set the positions equal:
By equating the components, specifically the z-components, we find that:
The intersections continue by solving for and such that:
The second equation simplifies to find and leads to when fully solved.
A similar methodology for finding the angle between lines includes employing the directional vectors from both lines.
For the planes, and , we derive the scalar product equation of by establishing its normal vector aligned with line and incorporating the mandatory point through a standard point-to-plane axial determination formula.
Additionally, calculating angles between planes utilizes the normals established from each plane’s respective equations, followed by applying the cosine of the angle between them.
Finally, with plane , we determine its parallel nature to while applying a specific displacement based on the distance condition required, ultimately allowing us to formulate its cartesian equations.
In sum, by aligning our vector components and utilizing fundamental properties of plane geometry, we arrive at the necessary conditions and results requested.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad