Pregunta
upstudy study bank question image url

\( 1 \leqslant \quad \) Express the following inequality a) using a number line, b) in interval notation, and \( c \) ) as a solution set (use set builder notation).

Ask by Mcfarlane Adkins. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

a) **Number Line**: A closed circle at 1 with shading extending to the right. b) **Interval Notation**: \([1, \infty)\) c) **Set Builder Notation**: \(\{\, x \mid x \geq 1 \,\}\)

Solución

It appears you're working with the inequality \( 1 \leq x \). Let's express this inequality in the three requested formats: ### a) Using a Number Line A number line representation of \( 1 \leq x \) would show all numbers from **1** to positive infinity, including **1** itself. Here's a textual description: - **Closed Circle at 1**: Indicates that **1** is included in the solution set. - **Shading to the Right**: Represents all numbers greater than or equal to **1**. ``` <----|======================> 1 ``` *Note: The "=" signs represent shading extending to the right from **1**, and the "|" at **1** is a closed circle. ### b) In Interval Notation Interval notation compactly represents the set of solutions. For \( 1 \leq x \): \[ [1, \infty) \] - **[1,** : The square bracket **[** indicates that **1** is included. - **\(\infty)\)** : The parenthesis **)** indicates that infinity is not a specific number and thus not included. ### c) As a Solution Set (Set Builder Notation) Set builder notation describes the set of all elements **x** that satisfy the inequality. For \( 1 \leq x \): \[ \{\, x \mid x \geq 1 \,\} \] - **\(\{\, x \mid\)** : Represents the set of all **x** such that the condition that follows is true. - **\(x \geq 1 \,\}** : The condition that **x** is greater than or equal to **1**. --- **Summary:** a) **Number Line**: Closed circle at 1 with shading to the right. b) **Interval Notation**: \([1, \infty)\) c) **Set Builder Notation**: \(\{\, x \mid x \geq 1 \,\}\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To visualize the inequality \( 1 \leqslant x \) on a number line, draw a horizontal line with an arrow extending to the right from the number 1. Mark the point 1 as filled (to indicate that it is included) and shade the region to the right to show that all numbers greater than or equal to 1 are part of the solution. In interval notation, the inequality can be expressed as \([1, \infty)\), indicating that the solution includes the number 1 and all numbers greater than 1 extending infinitely to the right. The solution set can also be represented in set builder notation as \(\{ x \mid x \geq 1 \}\), which reads as "the set of all \(x\) such that \(x\) is greater than or equal to 1." This notation succinctly describes the condition that defines the members of the set.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad