18. \( -5 m^{2}+4 m+3=0 \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To solve the quadratic equation \( -5m^{2}+4m+3=0 \), we can use the quadratic formula \( m = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = -5 \), \( b = 4 \), and \( c = 3 \). First, we need to calculate the discriminant: \[ b^2 - 4ac = 4^2 - 4(-5)(3) = 16 + 60 = 76 \] Now, plug the values into the formula: \[ m = \frac{-4 \pm \sqrt{76}}{2 \times -5} = \frac{-4 \pm 2\sqrt{19}}{-10} \] This gives us the two solutions for \( m \): \[ m = \frac{4 \pm 2\sqrt{19}}{10} \] Simplifying further, we get: \[ m = \frac{2 \pm \sqrt{19}}{5} \] This equation yields two specific solutions for \( m \), which can be approximated numerically as \( m \approx 1.18 \) and \( m \approx -0.68 \).