Pregunta
upstudy study bank question image url

Find the solution for \( x \) in the equation \( 2(3)^{x}=8 \) \( x=-1.262 \) \( x=1.262 \) \( x=0.631 \) \( x=-0.631 \)

Ask by Wheeler Cox. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( x = 1.262 \)

Solución

To solve the equation \( 2(3)^x = 8 \) for \( x \), follow these steps: 1. **Isolate the exponential term:** \[ 2(3)^x = 8 \implies (3)^x = \frac{8}{2} = 4 \] 2. **Take the natural logarithm (ln) of both sides:** \[ \ln(3^x) = \ln(4) \] 3. **Use the logarithm power rule (\( \ln(a^b) = b \ln(a) \)):** \[ x \ln(3) = \ln(4) \] 4. **Solve for \( x \):** \[ x = \frac{\ln(4)}{\ln(3)} \approx \frac{1.3863}{1.0986} \approx 1.262 \] Therefore, the correct solution is: **\( x = 1.262 \)**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the equation \( 2(3)^{x} = 8 \), we first divide both sides by 2, giving us \( (3)^{x} = 4 \). Then, we can express 4 as \( 2^2 \) and take logarithms of both sides or use the property of exponents. Let's write it in logarithmic form: \( x = \log_3(4) \). Now, using change of base formula yields \( x = \frac{\log(4)}{\log(3)} \approx 1.26186 \), which is approximately \( 1.262 \). So, the correct answer is \( x \approx 1.262 \). Did you know that logarithms were developed in the early 17th century by John Napier? They were initially created to simplify complex calculations, making it easier for scientists and astronomers of the time to perform multiplication and division through addition and subtraction! In real-world applications, logarithms are essential in fields like finance to model exponential growth, such as compound interest, and in biology to describe population growth rates. They're also used in the field of acoustics to measure sound intensity using the decibel scale, demonstrating just how versatile and practical these mathematical concepts can be!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad