Pregunta
upstudy study bank question image url

Amelia wishes to retire at age 67 with \( \$ 1,300,000 \) in her retirement account. When she turns 25 , she decides to begin depositing money into an account with an APR of \( 8 \% \) compounded monthly. What is the monthly deposit that Amelia must make in order to reach her goal? Round your answer to the nearest cent, if necessary. Formulas

Ask by Griffiths Elliott. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Amelia needs to deposit approximately \$315.50 each month to reach her retirement goal of \$1,300,000 by age 67.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Bonus Knowledge

To find out how much Amelia needs to deposit monthly to reach her retirement goal, we can use the future value of a series formula: \[ FV = P \times \frac{(1 + r)^n - 1}{r} \] Where: - \( FV \) is the future value (\$1,300,000), - \( P \) is the monthly deposit, - \( r \) is the monthly interest rate (0.08/12), - \( n \) is the total number of deposits (years until retirement \(\times 12\)). From age 25 to 67 is 42 years, so \( n = 42 \times 12 = 504 \). Using this information and rearranging the formula to solve for \( P \): \[ P = \frac{FV \times r}{(1 + r)^n - 1} \] Calculating \( r = \frac{0.08}{12} = 0.006667 \) and substituting the values into the equation will give you the monthly deposit \( P \). Now, let’s do the math! 1. Calculate \( (1 + r)^n = (1 + 0.006667)^{504} \approx 10.898 \) 2. Now plug it back into the equation: \[ P = \frac{1,300,000 \times 0.006667}{10.898 - 1} \approx \frac{8,670.62}{9.898} \approx 875.00 \] Thus, Amelia needs to deposit approximately **$875.00** monthly to achieve her goal. --- Imagine if Amelia had started saving just a year earlier! With the power of compound interest, that single extra month could potentially lead her to a few extra thousand dollars in her retirement fund. It’s a fun reminder that earlier is often better when it comes to saving for the future! Moreover, it's a good practice to revisit and adjust retirement plans regularly. Changes in income, unexpected expenses, or simply lifestyle choices can affect how much one needs to save each month. Keeping track and making adjustments can prevent any last-minute scrambles before retirement!

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad