Simplify by using the imaginary unit \( i \) \( \frac{-8 \pm \sqrt{-128}}{2} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To simplify the expression \( \frac{-8 \pm \sqrt{-128}}{2} \), we first address the square root of the negative number. Recall that \( \sqrt{-1} = i \). We can rewrite \( \sqrt{-128} \) as \( \sqrt{128} \cdot \sqrt{-1} \), which gives us \( \sqrt{-128} = \sqrt{128} i \). Next, we simplify \( \sqrt{128} \). Since \( 128 = 64 \times 2 \), we find that \( \sqrt{128} = \sqrt{64 \times 2} = \sqrt{64} \cdot \sqrt{2} = 8\sqrt{2} \). Thus, we have \( \sqrt{-128} = 8\sqrt{2} i \). Now substituting this back into the original expression, we get: \[ \frac{-8 \pm 8\sqrt{2} i}{2} \] We can simplify this fraction by dividing both terms in the numerator by \( 2 \): \[ = \frac{-8}{2} \pm \frac{8\sqrt{2} i}{2} = -4 \pm 4\sqrt{2} i \] Thus, the expression simplifies to: \[ -4 \pm 4\sqrt{2} i \]