Pregunta
11. Simplify. \( 6-(3+2 \cdot 5)+(-3)^{2} \) \( \begin{array}{ll}\text { A. }-15 & \text { B. } 2 \\ \text { C. } 28 & \text { D. } 34\end{array} \)
Ask by Johnston Watkins. in the United States
Jan 27,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The simplified value of the expression is 2.
Solución
To simplify the expression \( 6 - (3 + 2 \cdot 5) + (-3)^{2} \), follow the order of operations (PEMDAS/BODMAS):
1. **Parentheses/Brackets**:
\[
3 + 2 \cdot 5
\]
- First, perform the multiplication:
\[
2 \cdot 5 = 10
\]
- Then, add:
\[
3 + 10 = 13
\]
2. **Substitute back into the expression**:
\[
6 - 13 + (-3)^{2}
\]
3. **Exponents**:
\[
(-3)^{2} = (-3) \times (-3) = 9
\]
4. **Perform the remaining operations**:
\[
6 - 13 + 9
\]
- Subtract:
\[
6 - 13 = -7
\]
- Add:
\[
-7 + 9 = 2
\]
So, the simplified value of the expression is **2**.
**Answer:** B. 2
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
Let's break it down step by step: 1. First, calculate the multiplication: \( 2 \cdot 5 = 10 \). 2. Then, substitute it back into the expression: \( 6 - (3 + 10) + (-3)^2 \). 3. Now, simplify inside the parentheses: \( 3 + 10 = 13 \). 4. The expression now looks like \( 6 - 13 + (-3)^2 \). 5. Calculate \( (-3)^2 = 9 \). 6. Now the expression is \( 6 - 13 + 9 \). 7. Finally, perform the operations from left to right: \( 6 - 13 = -7 \), then \( -7 + 9 = 2 \). So, the simplified value is \( 2 \). The answer is **B. 2**.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium