Equivalent Fractions Write a fraction equivalent to each fraction. \( \begin{array}{llll}\text { 13. } \frac{6}{18} & \text { 14. } \frac{12}{22} & \text { 15. } \frac{15}{25} & \text { 16. } \frac{8}{26} \\ \begin{array}{llll}\text { 17. } \frac{14}{35} & \text { 18. } \frac{4}{18} & \text { 19. } \frac{1}{7} & \text { 20. } \frac{4}{11}\end{array}\end{array} \).
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find fractions that are equivalent to the given ones, just remember that you can multiply or divide both the numerator and the denominator by the same non-zero number. For example, for \(\frac{6}{18}\), if you divide both the top and bottom by 6, you get \(\frac{1}{3}\). Similarly, for \(\frac{12}{22}\), you can divide both by 2 to get \(\frac{6}{11}\). Keep this handy tip in mind as you tackle the rest of the fractions! Here's a quick equivalent list for the rest: - \(\frac{15}{25}\) can be simplified by dividing both by 5 to yield \(\frac{3}{5}\). - \(\frac{8}{26}\) simplifies to \(\frac{4}{13}\) when you divide by 2. - \(\frac{14}{35}\) can be simplified to \(\frac{2}{5}\) by dividing both by 7. - \(\frac{4}{18}\) gives \(\frac{2}{9}\) when you divide by 2. - \(\frac{1}{7}\) remains as is (you could multiply by any number like 2 to get \(\frac{2}{14}\)). - \(\frac{4}{11}\) also stays the same, but could be expressed as \(\frac{8}{22}\) by doubling. Happy fraction hunting!