4 of 5 What is the domain of \( y=3 \sqrt{-2 x-7}-2 \) ? Enter any fractions as improper fractions. (1 point) The domain of the function is ( \( \square, \square \). Check answer Remaining Attempts : 3
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the domain of the function \( y=3 \sqrt{-2 x-7}-2 \), we start by identifying where the expression under the square root is non-negative, since the square root of a negative number is undefined in the real number system. Thus, we set up the inequality: \[ -2x - 7 \geq 0 \] Solving this gives: \[ -2x \geq 7 \implies x \leq -\frac{7}{2} \] We can conclude that the domain of the function is: \[ (-\infty, -\frac{7}{2}] \] So, the domain of the function is ( \( -\infty, -\frac{7}{2} \) ).