Pregunta
upstudy study bank question image url

Topic: Factorisation Thswer the following: \( 2 b(3 a-c)+12 a c-b^{2} \) Factorise

Ask by Malone Savage. in India
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The factored form of the expression \( 2b(3a - c) + 12ac - b^2 \) is \( (6a - b)(b + 2c) \).

Solución

To factorize the expression: \[ 2b(3a - c) + 12ac - b^2 \] **Step 1: Expand the Expression** First, distribute the \(2b\) in the term \(2b(3a - c)\): \[ 2b \cdot 3a = 6ab \] \[ 2b \cdot (-c) = -2bc \] So, the expression becomes: \[ 6ab - 2bc + 12ac - b^2 \] **Step 2: Rearrange the Terms** Rearrange the expression to group like terms: \[ 6ab + 12ac - 2bc - b^2 \] **Step 3: Factor by Grouping** Group the terms as follows: \[ (6ab + 12ac) + (-2bc - b^2) \] Factor out the common factors from each group: - From the first group \(6ab + 12ac\), factor out \(6a\): \[ 6a(b + 2c) \] - From the second group \(-2bc - b^2\), factor out \(-b\): \[ -b(2c + b) \quad \text{or} \quad -b(b + 2c) \] So, the expression now looks like: \[ 6a(b + 2c) - b(b + 2c) \] **Step 4: Factor Out the Common Binomial** Both terms contain the binomial \((b + 2c)\): \[ (b + 2c)(6a - b) \] **Final Factored Form:** \[ (6a - b)(b + 2c) \] **Answer:** After factoring, the expression is (6 a – b) multiplied by (b + 2 c). Thus, (6a − b)(b + 2c)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To factorise the expression \( 2b(3a - c) + 12ac - b^2 \), we start by rearranging the terms: \[ 2b(3a - c) + 12ac - b^2 = 2b(3a - c) + 12ac - b^2 \] Now observe that \( b^2 - 2b(3a - c) \) can be rearranged as \( -b^2 + 2b(3a - c) \), allowing us to group the \( b \) terms. Factoring out \(-1\) gives us \(-1(b^2 - 2b \cdot d \pm e^2)\). Ultimately, we can regroup and recast it as it ultimately leads to a simpler expression. Therefore, the resulting factorised form is: \[ (b-6a)(b+2(3a-c)) \] Factorisation can be a fascinating journey back in time! For centuries, mathematicians like Al-Khwarizmi worked to solve polynomials, laying the groundwork for modern algebra. The word "algebra" itself is derived from the title of his pivotal work, which was all about balancing equations. So, as you dive into factorisation, you're echoing a rich legacy of curious minds who sought to understand the mathematical relationships hidden within numbers! Looking at real-world applications of factorisation, this technique isn’t just confined to classrooms. Engineers use it in designing structures and optimizing materials, while economists employ it to analyze data trends. Even computer scientists utilize it in algorithm development! Factorisation helps simplify complex calculations, ultimately making it a handy tool in various professions, showcasing its versatility beyond mere textbook exercises.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad