MT2-2 a) \( \int \frac{1}{\sqrt{9-25 x^{2}}} d x \) AmDCrath Answer any 1 questions from 5 to 6 . Each carries 4 Marks. 5 a) Find the area enclosed by the circle \( x^{2}+y^{2}=25 \) using integration. b) If \( \int \frac{f(x)}{\tan x} d x=\log |\tan x|+C \), then \( f(x)=\ldots \). 6. a) Find the area of the region bounded by \( y^{2}=9 x, x=2, x=4 \) and the \( x \)-axis in the first quadrant. b) Find \( \int_{-1}^{1} 5 x^{4} \sqrt{x^{5}+1} d x \) a) Find \( \mathrm{y}^{2}=9 \mathrm{x} n \) - (3) (1) b) \( \int_{-1}^{1} 5 x^{4} \sqrt{x^{5}+1} d x \) किणनाइक Answer any 2 questions from 7 to 9 . Each carries 6 Marks . 7. a) The length \( x \) of a rectangle is increasing at the rate of \( 4 \mathrm{~cm} / \mathrm{s} \) and the width \( y \) is decreasing at the rate of \( 5 \mathrm{~cm} / \mathrm{s} \). When \( \mathrm{x}=10 \mathrm{~cm} \) and \( \mathrm{y}=5 \mathrm{~cm} \). i) Find the rates of change of its area. ii) Find the rates of change of the perimeter of the rectangle. \( (2 \) \( (2 \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To solve the integral \( \int \frac{1}{\sqrt{9-25x^2}} dx \), we can use a trigonometric substitution. Let \( x = \frac{3}{5} \sin(\theta) \). Consequently, \( dx = \frac{3}{5} \cos(\theta) d\theta \), and the integral transforms nicely into \( \int d\theta \) after adjusting the limits based on the substitution. This ultimately leads to \( \frac{3}{5}\sin^{-1}\left(\frac{5x}{3}\right) + C \). Now, for the area enclosed by the circle given by the equation \( x^2 + y^2 = 25 \), we can set up the integral by solving for \( y \): \( y = \sqrt{25 - x^2} \). The area is found using the symmetry of the circle: \( \text{Area} = 4 \int_{0}^{5} \sqrt{25 - x^2} \, dx \). Evaluating this integral with a substitution (like \( x = 5 \sin(\theta) \)) is a fun challenge that ultimately gives you the total area of \( 25\pi \) square units!