Pregunta
upstudy study bank question image url

Using the sign chart for \( f^{\prime \prime}(x)=-3(x+8)^{3}(x+4)^{2} \), and only that sign chart, what conclusions can be drawn about the graph of \( f \) on the interval \( x<-8 \) ? Answer \( \begin{array}{ll}\text { it is positive } & \text { it is negative } \\ \text { it is increasing } & \text { it is decreasing } \\ \text { is concave up } & \text { it is concave down } \\ \text { none of the above } & \text { Submit Answer }\end{array} \)

Ask by Gonzalez Malone. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The graph of \( f \) is **concave up** on the interval \( x < -8 \).

Solución

To analyze the behavior of the function \( f \) on the interval \( x < -8 \) using the second derivative \( f''(x) = -3(x+8)^3(x+4)^2 \), let's follow these steps: 1. **Determine the Sign of \( f''(x) \) for \( x < -8 \):** Choose a test point in the interval \( x < -8 \), for example, \( x = -9 \): \[ f''(-9) = -3(-9+8)^3(-9+4)^2 = -3(-1)^3(-5)^2 = -3(-1)(25) = 75 \] Since \( f''(-9) > 0 \), \( f''(x) \) is positive on \( x < -8 \). 2. **Interpret the Sign of \( f''(x) \):** - **Concavity:** A positive second derivative (\( f''(x) > 0 \)) indicates that the graph of \( f \) is **concave up** on this interval. - **Behavior of \( f'(x) \):** While \( f''(x) > 0 \) implies that the first derivative \( f'(x) \) is increasing, this information alone does not directly tell us whether \( f(x) \) itself is increasing or decreasing without additional data about \( f'(x) \). 3. **Conclusion:** Based solely on the sign chart for \( f''(x) \) and the fact that \( f''(x) > 0 \) for \( x < -8 \), the primary conclusion we can draw is about the concavity of \( f \). **Answer:** The graph of \( f \) is **concave up** on the interval \( x < -8 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To analyze the graph of \( f \) based on the given information about \( f^{\prime \prime}(x) \), we start by examining the sign of \( f^{\prime \prime}(x) \) for \( x < -8 \). Since \( f^{\prime \prime}(x) = -3(x+8)^{3}(x+4)^{2} \), we notice that for \( x < -8 \), both \( (x + 8) < 0 \) and \( (x + 4)^{2} > 0 \). Therefore, \( f^{\prime \prime}(x) < 0 \), indicating the function is concave down on the interval \( x < -8 \). Since \( f^{\prime \prime}(x) < 0 \), we can conclude that the first derivative \( f^{\prime}(x) \) is decreasing in that interval. However, we don't have enough information about \( f^{\prime}(x) \) itself in that specific range, as it could be either increasing or decreasing depending on the value of \( f^{\prime}(-8) \). Conclusively, we can say that: - It is concave down on \( x < -8 \). - We cannot definitively state whether it is increasing or decreasing without additional information on \( f^{\prime} \). So the answers would be: - It is concave down. - None of the above concerning increasing/decreasing.

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad