Pregunta
upstudy study bank question image url

2. The cost of tuition at a college is \( \$ 12,000 \) and is increasing at a rate of \( 6 \% \) each year. Use an exponential function to find the tuition cost after 4 years.

Ask by Coleman Whittaker. in the United States
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The tuition cost after 4 years is approximately \$15,149.72.

Solución

To find the tuition cost after 4 years, we can use an exponential function. The general form of an exponential function is: \[ y = a \cdot b^x \] where: - \( a \) is the initial value (in this case, the initial tuition cost of $12,000), - \( b \) is the growth factor (in this case, the rate of increase of 6%), - \( x \) is the number of years. Given that the tuition cost is increasing at a rate of 6% each year, we can calculate the growth factor \( b \) as follows: \[ b = 1 + \text{rate of increase} = 1 + 0.06 = 1.06 \] Now, we can substitute the values into the exponential function to find the tuition cost after 4 years: \[ y = 12000 \cdot 1.06^4 \] Let's calculate this using the exponential function. Calculate the value by following steps: - step0: Calculate: \(12000\times 1.06^{4}\) - step1: Convert the expressions: \(12000\left(\frac{53}{50}\right)^{4}\) - step2: Simplify: \(12000\times \frac{53^{4}}{50^{4}}\) - step3: Rewrite the expression: \(50\times 240\times \frac{53^{4}}{50^{4}}\) - step4: Reduce the numbers: \(240\times \frac{53^{4}}{50^{3}}\) - step5: Rewrite the expression: \(10\times 24\times \frac{53^{4}}{50^{3}}\) - step6: Rewrite the expression: \(10\times 24\times \frac{53^{4}}{10^{3}\times 5^{3}}\) - step7: Reduce the numbers: \(24\times \frac{53^{4}}{10^{2}\times 5^{3}}\) - step8: Rewrite the expression: \(8\times 3\times \frac{53^{4}}{10^{2}\times 5^{3}}\) - step9: Rewrite the expression: \(8\times 3\times \frac{53^{4}}{2^{2}\times 5^{2}\times 5^{3}}\) - step10: Rewrite the expression: \(2^{3}\times 3\times \frac{53^{4}}{2^{2}\times 5^{2}\times 5^{3}}\) - step11: Reduce the numbers: \(2\times 3\times \frac{53^{4}}{5^{2}\times 5^{3}}\) - step12: Multiply: \(\frac{6\times 53^{4}}{5^{5}}\) - step13: Simplify: \(\frac{6\times 53^{4}}{3125}\) The tuition cost after 4 years is approximately $15,149.72.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the tuition cost after 4 years, we can use the exponential growth formula \( A = P(1 + r)^t \), where \( A \) is the amount after time \( t \), \( P \) is the principal amount (initial cost), \( r \) is the rate of increase, and \( t \) is the time in years. Here, \( P = 12000 \), \( r = 0.06 \), and \( t = 4 \). Calculating it gives us: \[ A = 12000(1 + 0.06)^4 \] \[ A = 12000(1.2625) \approx 15150 \] Thus, the tuition cost after 4 years will be approximately \( \$ 15,150 \). Now that’s a tuition hike worth pondering!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad