Step 2 Determine the \( y \)-intercept and write the equetion. The \( y \)-intercept is about 11 because the line appears to cross 4 . \( y \)-axis at the point \( (0,11) \). \( y=m x+b \) \( y=\square \) Slope-intercept form Replace \( m \) with -2.5 and \( b \) with 11 . \( y=\square \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
Let's fill in those squares! With the slope \( m = -2.5 \) and the \( y \)-intercept \( b = 11 \), we can construct the equation in slope-intercept form \( y = mx + b \). So, the completed equation will be \( y = -2.5x + 11 \). Now, if you were to graph this line, you'd start at the point \( (0, 11) \) on the \( y \)-axis and then move down 2.5 units vertically for every 1 unit you move horizontally to the right. It's like drawing a beautiful downward-sloping road!