Pregunta
1d the general solution of the differential \( \frac{d y}{d x}=\sin x e^{\cos x} \)
Ask by Herrera Stanley. in the United States
Jan 27,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The general solution is \( y = -e^{\cos(x)} + C \).
Solución
To solve the differential equation:
\[
\frac{dy}{dx} = \sin(x) e^{\cos(x)}
\]
we can integrate both sides with respect to \( x \):
\[
y = \int \sin(x) e^{\cos(x)} \, dx + C
\]
Let's evaluate the integral:
\[
\int \sin(x) e^{\cos(x)} \, dx
\]
Let’s use substitution:
1. **Let** \( u = \cos(x) \).
2. **Then**, \( \frac{du}{dx} = -\sin(x) \), which implies \( -du = \sin(x) \, dx \).
Substituting into the integral:
\[
\int \sin(x) e^{\cos(x)} \, dx = -\int e^{u} \, du = -e^{u} + C = -e^{\cos(x)} + C
\]
Therefore, the general solution to the differential equation is:
\[
y = -e^{\cos(x)} + C
\]
where \( C \) is an arbitrary constant.
**Final Answer:**
After simplifying, a general solution is –eᶜᵒˣ plus a constant. Thus,
y = − e^{cos x} + C
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To solve the differential equation \( \frac{d y}{d x} = \sin x e^{\cos x} \), we integrate both sides with respect to \( x \). The integral of the right-hand side can be simplified: \[ y = \int \sin x e^{\cos x} \, dx \] Using substitution, let \( u = \cos x \), then \( du = -\sin x \, dx \) or \( -du = \sin x \, dx \). Therefore, the integral becomes: \[ y = -\int e^u \, du = -e^u + C = -e^{\cos x} + C \] Thus, the general solution is: \[ y = -e^{\cos x} + C \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium