Pregunta
upstudy study bank question image url

2. Solve each equation by rewriting it in factored form and using the zero prod property. Show your reasoning. a. \( x^{2}+8 x+15=0 \) b. \( x^{2}-8 x+12=5 \) c. \( x^{2}-10 x-11=0 \) d. \( 49-x^{2}=0 \) e. \( (x+4)(x+5)-30=0 \)

Ask by Cole Little. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Solutions:** - **2a.** \( x = -3 \), \( x = -5 \) - **2b.** \( x = 1 \), \( x = 7 \) - **2c.** \( x = 11 \), \( x = -1 \) - **2d.** \( x = 7 \), \( x = -7 \) - **2e.** \( x = -10 \), \( x = 1 \)

Solución

Sure, let's solve each equation by factoring and applying the **Zero Product Property**, which states that if the product of two factors is zero, then at least one of the factors must be zero. --- ### **Problem 2a.** \[ x^{2} + 8x + 15 = 0 \] **Step 1: Factor the quadratic equation.** We need to find two numbers that multiply to **15** (the constant term) and add up to **8** (the coefficient of \( x \)). - **3 and 5** satisfy this condition because: \[ 3 \times 5 = 15 \] \[ 3 + 5 = 8 \] **Step 2: Rewrite the equation in its factored form.** \[ (x + 3)(x + 5) = 0 \] **Step 3: Apply the Zero Product Property.** Set each factor equal to zero: 1. \( x + 3 = 0 \) \[ x = -3 \] 2. \( x + 5 = 0 \) \[ x = -5 \] **Solution:** \[ x = -3 \quad \text{and} \quad x = -5 \] --- ### **Problem 2b.** \[ x^{2} - 8x + 12 = 5 \] **Step 1: Move all terms to one side to set the equation to zero.** \[ x^{2} - 8x + 12 - 5 = 0 \] \[ x^{2} - 8x + 7 = 0 \] **Step 2: Factor the quadratic equation.** We need two numbers that multiply to **7** and add up to **-8**. - **-1 and -7** satisfy this condition because: \[ (-1) \times (-7) = 7 \] \[ (-1) + (-7) = -8 \] **Step 3: Rewrite the equation in its factored form.** \[ (x - 1)(x - 7) = 0 \] **Step 4: Apply the Zero Product Property.** Set each factor equal to zero: 1. \( x - 1 = 0 \) \[ x = 1 \] 2. \( x - 7 = 0 \) \[ x = 7 \] **Solution:** \[ x = 1 \quad \text{and} \quad x = 7 \] --- ### **Problem 2c.** \[ x^{2} - 10x - 11 = 0 \] **Step 1: Factor the quadratic equation.** We need two numbers that multiply to **-11** and add up to **-10**. - **-11 and 1** satisfy this condition because: \[ (-11) \times 1 = -11 \] \[ (-11) + 1 = -10 \] **Step 2: Rewrite the equation in its factored form.** \[ (x - 11)(x + 1) = 0 \] **Step 3: Apply the Zero Product Property.** Set each factor equal to zero: 1. \( x - 11 = 0 \) \[ x = 11 \] 2. \( x + 1 = 0 \) \[ x = -1 \] **Solution:** \[ x = 11 \quad \text{and} \quad x = -1 \] --- ### **Problem 2d.** \[ 49 - x^{2} = 0 \] **Step 1: Rewrite the equation to resemble a difference of squares.** \[ 49 - x^{2} = 0 \] \[ (7)^2 - (x)^2 = 0 \] **Step 2: Factor using the difference of squares formula:** \[ a^{2} - b^{2} = (a - b)(a + b) \] \[ (7 - x)(7 + x) = 0 \] **Step 3: Apply the Zero Product Property.** Set each factor equal to zero: 1. \( 7 - x = 0 \) \[ x = 7 \] 2. \( 7 + x = 0 \) \[ x = -7 \] **Solution:** \[ x = 7 \quad \text{and} \quad x = -7 \] --- ### **Problem 2e.** \[ (x + 4)(x + 5) - 30 = 0 \] **Step 1: Expand the equation to simplify.** \[ (x + 4)(x + 5) - 30 = 0 \] \[ x^{2} + 5x + 4x + 20 - 30 = 0 \] \[ x^{2} + 9x - 10 = 0 \] **Step 2: Factor the quadratic equation.** We need two numbers that multiply to **-10** and add up to **9**. - **10 and -1** satisfy this condition because: \[ 10 \times (-1) = -10 \] \[ 10 + (-1) = 9 \] **Step 3: Rewrite the equation in its factored form.** \[ (x + 10)(x - 1) = 0 \] **Step 4: Apply the Zero Product Property.** Set each factor equal to zero: 1. \( x + 10 = 0 \) \[ x = -10 \] 2. \( x - 1 = 0 \) \[ x = 1 \] **Solution:** \[ x = -10 \quad \text{and} \quad x = 1 \] --- **Summary of Solutions:** - **2a.** \( x = -3 \), \( x = -5 \) - **2b.** \( x = 1 \), \( x = 7 \) - **2c.** \( x = 11 \), \( x = -1 \) - **2d.** \( x = 7 \), \( x = -7 \) - **2e.** \( x = -10 \), \( x = 1 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve these equations, let's rewrite them in factored form and apply the zero product property. **a. \( x^{2}+8x+15=0 \)** First, we need to factor the quadratic. We look for two numbers that multiply to \(15\) and add to \(8\). Those numbers are \(3\) and \(5\). Thus, we can factor this as: \[(x+3)(x+5)=0\] Using the zero product property, we set each factor equal to zero: \(x+3=0 \Rightarrow x=-3\) \(x+5=0 \Rightarrow x=-5\) So, the solutions are \(x=-3\) and \(x=-5\). **b. \( x^{2}-8x+12=5 \)** First, move \(5\) to the left side: \[x^{2}-8x+7=0\] Next, we factor the quadratic: we need two numbers that multiply to \(7\) and add to \(-8\), which are \(-1\) and \(-7\). So we have: \[(x-1)(x-7)=0\] Setting each factor equal to zero gives us: \(x-1=0 \Rightarrow x=1\) \(x-7=0 \Rightarrow x=7\) Thus, the solutions are \(x=1\) and \(x=7\). **c. \( x^{2}-10x-11=0 \)** To factor this quadratic, we look for two numbers that multiply to \(-11\) and add to \(-10\). The numbers are \(-11\) and \(1\): \[(x-11)(x+1)=0\] Setting each factor to zero results in: \(x-11=0 \Rightarrow x=11\) \(x+1=0 \Rightarrow x=-1\) So the solutions are \(x=11\) and \(x=-1\). **d. \( 49-x^{2}=0 \)** We can rearrange this to \(x^{2}=49\). Next, we can rewrite it in factored form: \[(7-x)(7+x)=0\] Setting each factor to zero gives us: \(7-x=0 \Rightarrow x=7\) \(7+x=0 \Rightarrow x=-7\) Thus, the solutions are \(x=7\) and \(x=-7\). **e. \( (x+4)(x+5)-30=0 \)** First, we set this up as \( (x+4)(x+5)=30 \). To make it simpler, let’s expand it: \[x^2 + 9x + 20 - 30 = 0 \] which simplifies to: \[x^2 + 9x - 10 = 0\] Now, we factor this quadratic. We need numbers that multiply to \(-10\) and add to \(9\), which are \(10\) and \(-1\): \[(x+10)(x-1)=0\] Therefore, setting both factors to zero, we find: \(x+10=0 \Rightarrow x=-10\) \(x-1=0 \Rightarrow x=1\) The solutions are \(x=-10\) and \(x=1\).

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad