Exaluate the expression \( \left(a^{2}+12 c\right) \div(7 b-1) \) when \( a=4, b=3 \), and \( c=\frac{1}{3} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
First, let's substitute the values of \( a \), \( b \), and \( c \) into the expression \( \left(a^{2}+12 c\right) \div(7 b-1) \). 1. Calculate \( a^2 \): \[ a^2 = 4^2 = 16 \] 2. Calculate \( 12c \): \[ 12c = 12 \times \frac{1}{3} = 4 \] 3. Add \( a^2 \) and \( 12c \): \[ a^2 + 12c = 16 + 4 = 20 \] 4. Calculate \( 7b - 1 \): \[ 7b - 1 = 7 \times 3 - 1 = 21 - 1 = 20 \] Now, substitute back into the expression: \[ \left(a^{2}+12 c\right) \div(7 b-1) = \frac{20}{20} = 1 \] So, the value of the expression when \( a = 4 \), \( b = 3 \), and \( c = \frac{1}{3} \) is \( 1 \).