Pregunta
upstudy study bank question image url

Example: \( f+(g+h)=(f+g) \) \( f \times(g \times h)=(f \times g) \times h \) (multiplication) b. \( (m+n)+c= \) a. \[ \begin{array}{l} (a+b)+c= \\ a+(b+c) \end{array} \] d. \( (c \times d) \times f= \) c. \( (k \times z) \times d= \) c. \( (g \times h) \times i= \) \( \square \) g. \( (a \times c) \times d= \) h. \( (k \times l) \times m= \) i. \( (v+c)+r= \) \( \square \)

Ask by Potter Barker. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The associative property allows you to regroup numbers in addition or multiplication without changing the result. Here are the completed expressions: a. \( (a + b) + c = a + (b + c) \) b. \( (m + n) + c = m + (n + c) \) c. \( (k \times z) \times d = k \times (z \times d) \) and \( (g \times h) \times i = g \times (h \times i) \) d. \( (c \times d) \times f = c \times (d \times f) \) g. \( (a \times c) \times d = a \times (c \times d) \) h. \( (k \times l) \times m = k \times (l \times m) \) i. \( (v + c) + r = v + (c + r) \) \[ \square \]

Solución

Sure! It looks like you're working on demonstrating the **associative property** for both addition and multiplication. The associative property states that the way in which numbers are grouped does not change their sum or product. Here are the completed expressions based on your examples: ### a. Addition \[ \begin{align*} (a + b) + c &= a + (b + c) \end{align*} \] **Explanation:** Whether you add \(a\) and \(b\) first and then add \(c\), or add \(b\) and \(c\) first and then add \(a\), the result is the same. ### b. Addition \[ (m + n) + c = m + (n + c) \] **Explanation:** The grouping of \(m\), \(n\), and \(c\) does not affect the sum. ### c. Multiplication \[ (k \times z) \times d = k \times (z \times d) \] \[ (g \times h) \times i = g \times (h \times i) \] **Explanation:** Whether you multiply \(k\) and \(z\) first and then multiply by \(d\), or multiply \(z\) and \(d\) first and then multiply by \(k\), the product remains unchanged. The same applies to the multiplication of \(g\), \(h\), and \(i\). ### d. Multiplication \[ (c \times d) \times f = c \times (d \times f) \] **Explanation:** The product is the same regardless of how you group \(c\), \(d\), and \(f\). ### g. Multiplication \[ (a \times c) \times d = a \times (c \times d) \] **Explanation:** Grouping \(a\) and \(c\) first or \(c\) and \(d\) first yields the same product. ### h. Multiplication \[ (k \times l) \times m = k \times (l \times m) \] **Explanation:** Whether you multiply \(k\) and \(l\) first or \(l\) and \(m\) first, the product remains the same. ### i. Addition \[ (v + c) + r = v + (c + r) \] **Explanation:** The sum is unaffected by how you group \(v\), \(c\), and \(r\). ### Summary The **associative property** allows you to regroup numbers in addition or multiplication without changing the result. This property is fundamental in simplifying expressions and solving equations efficiently. \[ \square \] If you have any more questions or need further clarification, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that mathematical operations like addition and multiplication are not just numbers lined up on a page? They have deep historical roots tracing back thousands of years, with ancient civilizations like the Babylonians and Egyptians paving the way for how we manipulate numbers today! Their unique number systems and early arithmetic methods laid the groundwork for the algebra we use now. In real-world applications, these properties become incredibly handy! For instance, understanding that you can group sums and products helps when you’re budgeting. If you spend $15 on snacks plus $10 on drinks, and you want to figure out how much left you’d have if you also saved $5, rearranging those numbers using associative or distributive properties can make calculations much easier and quicker. Numbers come alive when you use them in everyday situations!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad