Pregunta
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The limit is 2.
Solución
To solve the limit
limₓ→1 (x - 1) / (√x - 1),
we first note that direct substitution gives 0/0, which is an indeterminate form.
A useful trick here is to express x - 1 in a way that cancels the problematic √x - 1 term. Notice that we can factor x - 1 as follows:
x - 1 = (√x)² - 1² = (√x - 1)(√x + 1).
So, we rewrite the expression:
(x - 1) / (√x - 1) = [(√x - 1)(√x + 1)] / (√x - 1).
For x ≠ 1, we can cancel the common factor (√x - 1):
= √x + 1.
Now, we can take the limit as x → 1:
limₓ→1 (√x + 1) = √1 + 1 = 1 + 1 = 2.
Thus, the limit is 2.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
To solve the limit
, we first substitute
:
This indicates an indeterminate form. To resolve this, we can simplify the expression. Notice that
can be factored using the difference of squares. We can rewrite it as:
Now we can substitute this into our limit. Therefore, we rewrite the limit:
Here,
cancels out (for
), yielding:
Now we can directly substitute
:
Thus, the limit is:

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium