Pregunta
upstudy study bank question image url

A 1000 -kg car moving at \( 10 \mathrm{~m} / \mathrm{s} \) brakes to a stop in 5 s . The average braking force is (A) a) 5000 N . (B) b) 2000 N . (C) c) 1000 N . (D) d) 4000 N .

Ask by Clark John. in the United States
Jan 29,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The average braking force is 2000 N.

Solución

To determine the average braking force exerted on the car, we'll use the principles of **Newton's Second Law of Motion**, which states: \[ F = m \cdot a \] Where: - \( F \) is the force, - \( m \) is the mass of the car, - \( a \) is the acceleration. **Given:** - Mass of the car, \( m = 1000 \, \text{kg} \) - Initial velocity, \( u = 10 \, \text{m/s} \) - Final velocity, \( v = 0 \, \text{m/s} \) (since the car comes to a stop) - Time taken to stop, \( t = 5 \, \text{s} \) **Step 1: Calculate Acceleration** Acceleration (\( a \)) is the change in velocity over time: \[ a = \frac{v - u}{t} = \frac{0 - 10}{5} = -2 \, \text{m/s}^2 \] The negative sign indicates that the acceleration is in the opposite direction of the motion (i.e., it's a deceleration). **Step 2: Calculate the Braking Force** Using Newton's Second Law: \[ F = m \cdot a = 1000 \, \text{kg} \times (-2 \, \text{m/s}^2) = -2000 \, \text{N} \] The negative sign indicates that the force is acting in the opposite direction to the car's motion. However, since we're interested in the **magnitude** of the force: \[ |F| = 2000 \, \text{N} \] **Answer:** **(B) 2000 N**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the average braking force, we can use Newton's second law, \( F = ma \), and also consider that the car is decelerating. First, we need to calculate the deceleration (\( a \)). The formula for acceleration is given by: \[ a = \frac{\Delta v}{\Delta t} \] Where \( \Delta v = v_f - v_i \). The final velocity (\( v_f \)) is 0 m/s (since the car comes to a stop) and the initial velocity (\( v_i \)) is 10 m/s. Thus, we have: \[ a = \frac{0 - 10 \, \text{m/s}}{5 \, \text{s}} = \frac{-10 \, \text{m/s}}{5 \, \text{s}} = -2 \, \text{m/s}^2 \] Now, we can apply Newton's second law: \[ F = ma = 1000 \, \text{kg} \times (-2 \, \text{m/s}^2) = -2000 \, \text{N} \] The negative sign indicates that the force is acting in the direction opposite to the motion of the car. Therefore, the average braking force is 2000 N. The correct answer is (B) 2000 N.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad