Pregunta
Open Response The exact circumference of a circle is \( 34 \pi \) meters. What is the approximate area of the circle? Use 314 for \( \pi \). Round to the nearest hundredth if necessary.
Ask by Lewis Schofield. in the United States
Jan 25,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The approximate area of the circle is 90,746 square meters.
Solución
To find the approximate area of the circle given its circumference, we can follow these steps:
1. **Extract known conditions:**
- The circumference \( C \) of the circle is given as \( 34 \pi \) meters.
- We will use \( \pi \approx 314 \).
2. **Use the formula for circumference:**
The formula for the circumference of a circle is given by:
\[
C = 2 \pi r
\]
where \( r \) is the radius of the circle.
3. **Solve for the radius \( r \):**
We can rearrange the formula to solve for \( r \):
\[
r = \frac{C}{2 \pi}
\]
Substituting the given circumference:
\[
r = \frac{34 \pi}{2 \pi} = \frac{34}{2} = 17 \text{ meters}
\]
4. **Calculate the area \( A \) of the circle:**
The area of a circle is given by the formula:
\[
A = \pi r^2
\]
Substituting the radius we found:
\[
A = \pi (17)^2 = \pi \cdot 289
\]
5. **Substituting \( \pi \) with 314:**
\[
A \approx 314 \cdot 289
\]
6. **Perform the multiplication:**
Now, we will calculate \( 314 \cdot 289 \):
\[
A \approx 314 \cdot 289
\]
Let's calculate this value.
Calculate the value by following steps:
- step0: Calculate:
\(314\times 289\)
- step1: Multiply the numbers:
\(90746\)
The approximate area of the circle is \( 90746 \) square meters.
Since the problem does not require rounding to the nearest hundredth, the final answer is:
**The approximate area of the circle is \( 90746 \) square meters.**
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To find the area of the circle, we first need to determine the radius. The circumference \( C \) of a circle is given by \( C = 2 \pi r \). Since the circumference is \( 34 \pi \) meters, we can solve for \( r \): \[ 34 \pi = 2 \pi r \\ r = \frac{34 \pi}{2 \pi} = 17 \text{ meters} \] Now we can calculate the area \( A \) using the formula \( A = \pi r^2 \): \[ A = \pi (17^2) = \pi (289) \] Using \( \pi \approx 314 \): \[ A \approx 314 \times 289 = 90706 \] So, the approximate area of the circle is \( 90706 \) square meters.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium