What is the area of rectangle \( A B C D \) with vertices \( A(-6,3), B(2,5), C(3,1) \), and \( D(-5,-1) \) \( A=\square \) units \( ^{2} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the area of rectangle \( ABCD \), we first need to determine the lengths of its sides. We can do this by calculating the distances between two pairs of adjacent vertices. 1. **Distance between \( A(-6,3) \) and \( B(2,5) \)**: \[ AB = \sqrt{(2 - (-6))^2 + (5 - 3)^2} = \sqrt{(2 + 6)^2 + (5 - 3)^2} = \sqrt{8^2 + 2^2} = \sqrt{64 + 4} = \sqrt{68} = 2\sqrt{17} \] 2. **Distance between \( B(2,5) \) and \( C(3,1) \)**: \[ BC = \sqrt{(3 - 2)^2 + (1 - 5)^2} = \sqrt{(1)^2 + (-4)^2} = \sqrt{1 + 16} = \sqrt{17} \] The area \( A \) of rectangle \( ABCD \) is calculated by multiplying the lengths of two adjacent sides: \[ A = AB \times BC = (2\sqrt{17}) \times (\sqrt{17}) = 2 \times 17 = 34 \] Thus, the area of rectangle \( ABCD \) is \( A = 34 \) square units.