Pregunta
upstudy study bank question image url

\( \$ 900 \) are deposited in an account with 70, interest rate, compounded continuously. What is the balance after 6 years? \[ F=\$[?] \]

Ask by Spencer Fernandez. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The balance after 6 years is approximately \$60,017.70.

Solución

To find the balance after 6 years in an account with continuous compounding, we can use the formula for continuous compounding: \[ F = P \times e^{rt} \] Where: - \( F \) is the final balance - \( P \) is the principal amount (initial deposit) - \( r \) is the interest rate - \( t \) is the time in years Given: - Principal amount \( P = \$900 \) - Interest rate \( r = 70\% = 0.70 \) - Time \( t = 6 \) years Substitute the given values into the formula: \[ F = 900 \times e^{0.70 \times 6} \] Now, we can calculate the final balance using the formula. Calculate the value by following steps: - step0: Calculate: \(900e^{0.7\times 6}\) - step1: Multiply the numbers: \(900e^{4.2}\) - step2: Convert the expressions: \(900e^{\frac{21}{5}}\) The balance after 6 years in the account with continuous compounding is approximately $60017.70.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the balance after 6 years with continuous compounding, you can use the formula \( F = Pe^{rt} \), where \( P \) is the principal amount (\$900), \( r \) is the interest rate (0.70), and \( t \) is the time in years (6). Plugging in the numbers, we calculate: \[ F = 900e^{(0.70)(6)} \approx 900 \times e^{4.2} \approx 900 \times 66.6863 \approx 60,018.76 \] So the balance after 6 years is approximately \( F = \$60,018.76 \). Isn't it fascinating how money can grow exponentially with continuous compounding? Just think about it; spending years parked in a bank can turn into a mini fortune if nurtured with high interest rates! For a real-world twist, this principle applies to investments as varied as retirement accounts or savings plans. Imagine putting away some cash into a fund that compounds continuously; it’s like planting a money tree that keeps growing! Now, wouldn't you want to be a savvy investor like that?

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad