Pregunta
upstudy study bank question image url

Given the function

for between -1 and 2, find:
The net area
The total area

Ask by Cross Savage. in the United States
Mar 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Net area: 114
Total area: 118

Solución

We are given
for in the interval .

Step 1. Find the antiderivative

We integrate term‐by‐term:
Thus, an antiderivative is

Step 2. Compute the Net Area

The net area is given by
First, compute :
Next, compute :
Thus, the net area is

Step 3. Determine Where the Function Changes Sign

We need the total area, which is the sum of the absolute areas where may be negative.
Notice that
The factor is always positive for all real (its discriminant is negative when viewed as a quadratic in ). Hence, the sign of is determined by the factor :
  • For , .
  • For , .
Thus, the only sign change in the interval is at .

Step 4. Compute the Total Area

The total area is
Since is negative on and positive on :

Compute

Taking the absolute value gives .

Compute

Therefore, the total area is

Final Answers

Net area:
Total area:

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the net area under the curve of the function from to , you’d typically integrate the function over that interval. Calculating the definite integral:
Calculating this integral gives:
Evaluating it at the endpoints yields:
Next, to find the total area, you need to consider the sections where the function falls below the x-axis. By checking for zeros of within , we can find where the area could flip signs.
You would find that and also evaluate at the critical points to get the appropriate partitions. This might reveal is negative between those critical points or above the x-axis.
Thus, the total area will be the net area adding absolute values of any sections below the x-axis, traditionally:
Calculating those areas can be a bit involved, so be careful with your signs! Summing up relevant areas gives you the total area between to .

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad