()) If \( \lim _{x \rightarrow 6} f(x)=10 \) and \( \lim _{x \rightarrow 6} h(x)=-5 \), what is \( \lim _{x \rightarrow 6}[f(x)+h(x)]^{2} \) ? ()) Simplify your levels answer.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find \( \lim _{x \rightarrow 6}[f(x)+h(x)]^{2} \), we start by using the limits you've given. We know that \( \lim _{x \rightarrow 6} f(x) = 10 \) and \( \lim _{x \rightarrow 6} h(x) = -5 \). Using the property of limits, we can combine them: \[ \lim _{x \rightarrow 6}[f(x) + h(x)] = \lim _{x \rightarrow 6} f(x) + \lim _{x \rightarrow 6} h(x) = 10 + (-5) = 5. \] Now we need to take the square of this limit: \[ \lim _{x \rightarrow 6}[f(x)+h(x)]^{2} = [\lim _{x \rightarrow 6}(f(x) + h(x))]^{2} = 5^{2} = 25. \] So, \( \lim _{x \rightarrow 6}[f(x)+h(x)]^{2} = 25 \).