Pregunta
upstudy study bank question image url

(ii) \( Q_{2} \) is uniformly distributed along the line charge of length \( 2 L \) \[ \rho_{l}=\frac{Q_{2}}{2 L} \] Electric field \( \overrightarrow{\mathbf{E}}_{2} \) at \( (0,0,0) \) due to the line charge, \[ \stackrel{\overrightarrow{\mathbf{E}}}{2}=\frac{1}{4 \pi \varepsilon_{0}} \int_{c} \frac{\rho_{l} d l}{R^{2}} \overrightarrow{\mathbf{a}}_{R}=\frac{1}{4 \pi \varepsilon_{0}} \int_{c} \frac{\rho_{l} d l}{R^{3}} \vec{R} \] Source Point \( \vec{s}=-a \overrightarrow{\mathbf{a}}_{x}+y \overrightarrow{\mathbf{a}}_{y} \) Field Point \( \vec{f}=0, \mathrm{dl}=\mathrm{dy} \) \[ \overrightarrow{\boldsymbol{R}}=\vec{f}-\vec{s}=a \overrightarrow{\mathbf{a}}_{x}-y \overrightarrow{\mathbf{a}}_{y} \] \[ \begin{aligned} \mathbf{R} & =\left(a^{2}+y^{2}\right)^{\frac{1}{2}} \\ \overrightarrow{\mathbf{E}}_{2} & =\frac{\rho_{l}}{4 \pi \varepsilon_{0}} \int_{-L}^{L} \frac{\left(a \overrightarrow{\mathbf{a}}_{x}-y \overrightarrow{\mathbf{a}}_{y}\right) d y}{\left(a^{2}+y^{2}\right)^{\frac{3}{2}}} \\ & =\frac{\boldsymbol{p}_{l}}{4 \pi \varepsilon_{0}} \int_{-L}^{L} \frac{a \overrightarrow{\mathbf{a}}_{x} d y}{\left(a^{2}+y^{2}\right)^{\frac{3}{2}}}(\text { from symmetry }) \\ X & =\frac{\rho_{l} a \overrightarrow{\mathbf{a}}_{x}}{4 \pi \varepsilon_{0}} \int_{-L}^{L} \frac{d y}{\left(a^{2}+y^{2}\right)^{\frac{3}{2}}} \end{aligned} \] SUSS 10

Ask by Hilton Joseph. in Singapore
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The electric field \( \overrightarrow{\mathbf{E}}_{2} \) at the origin due to a uniformly charged line of length \( 2L \) with total charge \( Q_{2} \) is: \[ \overrightarrow{\mathbf{E}}_{2} = \frac{Q_{2}}{4 \pi \varepsilon_{0} \, a \sqrt{a^{2} + L^{2}}} \, \overrightarrow{\mathbf{a}}_{x} \] This field points in the \( x \)-direction and depends on the distance \( a \) from the line and the length \( L \) of the charge distribution.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Beyond the Answer

Did you know that the concept of electric fields and their relationships with charges has roots tracing back to the 18th century? Pioneers like Charles-Augustin de Coulomb and Michael Faraday laid the groundwork for our understanding of electromagnetism. Coulomb's Law, which describes the electrostatic force between charges, emerged from these studies, and subsequent developments in the field have led to innumerable applications in modern technology, from circuit design to wireless communication! If you're keen on diving deeper into the fascinating world of electric fields, consider exploring textbooks like "Introduction to Electrodynamics" by David J. Griffiths. This book not only demystifies complex concepts related to electric fields and potentials but also offers engaging problem sets to challenge your understanding. Additionally, online platforms like Coursera and edX offer fantastic courses on electromagnetism, helping you strengthen your physics knowledge while having fun with interactive simulations!

preguntas relacionadas

1. A stone is dropped from the top of a building and hits the ground travelling at Checkpoint 2 \( 45 \mathrm{~m} \cdot \mathrm{~s}^{-1} \). Ignore the effects of air resistance. Calculate the height of the building. 2. A ball is thrown upward at an unknown initial velocity. It takes \( 3,2 \mathrm{~s} \) to reach its highest point. Ignore the effects of air resistance. Calculate the initial velocity of the ball Exercise 2.1 Ignore the effects of air resistance. 1. A bomb falls out of an aircraft. To break the sound barrier of \( 340 \mathrm{~m} . \mathrm{s}^{-1} \) : a) how far does it need to fall? b) how long will this take? 2. A stone is thrown vertically upward from ground level with a velocity of \( 25 \mathrm{~m} . \mathrm{s}^{-1} \). Calculate: a) the maximum height reached. b) the time taken to reach its maximum height. 3. A stone is dropped from a bridge and is seen to splash into the water 3 s later. Calculate: a) the height of the bridge. b) the velocity with which the stone strikes the water. 4. A brick falls off a scaffold at a height of 80 m above the ground. Calculate: a) the magnitude of its velocity after falling for 2 s . b) the magnitude of its velocity when it hits the ground. c) the time taken to fall to the ground. 5. A stone, dropped from the top of a lighthouse, strikes the rocks below at a speed of \( 50 \mathrm{~m} \cdot \mathrm{~s}^{-1} \). Calculate the height of the lighthouse. 6. A stone is thrown vertically upward and reaches a height of 10 m . a) What was the initial velocity of the stone as it left the thrower's hand?
Física South Africa Feb 04, 2025

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad