31. Communicate and Justify Which is greater, \( \frac{4}{7} \times \frac{1}{4} \) or \( \frac{4}{7} \times \frac{1}{6} \) ? Explain,
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To compare \( \frac{4}{7} \times \frac{1}{4} \) and \( \frac{4}{7} \times \frac{1}{6} \), we can look at the fractions involved. Since \( \frac{4}{7} \) is common to both expressions, we only need to compare \( \frac{1}{4} \) and \( \frac{1}{6} \). Because \( \frac{1}{4} \) is greater than \( \frac{1}{6} \) (the smaller the denominator, the greater the fraction), we conclude that \( \frac{4}{7} \times \frac{1}{4} \) is greater than \( \frac{4}{7} \times \frac{1}{6} \). Thus, \( \frac{4}{7} \times \frac{1}{4} > \frac{4}{7} \times \frac{1}{6} \). For additional clarity, think of these fractions as pieces of pizza! If you have a pizza cut into 4 slices, each slice is larger than if it’s cut into 6 slices. So the pizza slice you get from a 4-slice cut is definitely bigger! Finally, when performing these kinds of comparisons, it's important to simplify first if possible. Students might mistakenly multiply the fractions before making comparisons, which complicates things unnecessarily—keep it simple and focus on the fractions directly!