Pregunta
upstudy study bank question image url

(3) \( \int \frac{\mathrm{d} x}{\sqrt{1-16 x^{2}}} ;= \) \( \begin{array}{ll}\text { (5) } \int \frac{3 x^{3}+x}{1+x^{4}} \mathrm{~d} x & \text { (4) } \int x^{2}\left(3+2 x^{3}\right)^{\frac{1}{6}} \mathrm{~d} x\end{array} \) \( \begin{array}{ll}\text { (7) } \int \frac{\cos \ln |x|}{x} \mathrm{~d} x & \text { (6) } \int \frac{\sqrt{1+\sqrt{x}}}{\sqrt{x}} \mathrm{~d} x \\ \text { (9) } \int \frac{\cos ^{3} x}{\sin ^{2} x} \mathrm{~d} x & \text { (8) } \int \frac{\ln \ln x}{x \ln x} \mathrm{~d} x(x>e) \\ \text { (11) } \int \sin ^{2} x \cos ^{2} x \mathrm{~d} x & \text { (10) } \int \cos ^{4} x \mathrm{~d} x\end{array} \)

Ask by Little Wade. in China
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( \int \frac{\mathrm{d} x}{\sqrt{1-16 x^{2}}} = \arcsin\left(\frac{x}{4}\right) + C \)

Solución

Alright, I need to solve the integral \( \int \frac{\mathrm{d} x}{\sqrt{1-16 x^{2}}} \). Let's start by looking at the integrand: \( \frac{1}{\sqrt{1-16 x^{2}}} \). This looks like a standard form that can be solved using a trigonometric substitution. Specifically, integrals of the form \( \int \frac{\mathrm{d} x}{\sqrt{a^2 - x^2}} \) are typically solved using the substitution \( x = a \sin \theta \). In this case, \( a = 4 \), so I'll let \( x = 4 \sin \theta \). Then, \( \mathrm{d} x = 4 \cos \theta \, \mathrm{d} \theta \). Substituting these into the integral, we get: \[ \int \frac{4 \cos \theta \, \mathrm{d} \theta}{\sqrt{1 - (4 \sin \theta)^2}} = \int \frac{4 \cos \theta \, \mathrm{d} \theta}{\sqrt{1 - 16 \sin^2 \theta}} \] Simplifying the denominator: \[ \sqrt{1 - 16 \sin^2 \theta} = \sqrt{1 - (4 \sin \theta)^2} = \sqrt{1 - 16 \sin^2 \theta} \] This doesn't seem to simplify things much. Maybe I should consider a different approach. Alternatively, I recall that integrals of the form \( \int \frac{\mathrm{d} x}{\sqrt{a^2 - x^2}} \) can also be expressed using the inverse sine function. Specifically: \[ \int \frac{\mathrm{d} x}{\sqrt{a^2 - x^2}} = \arcsin\left(\frac{x}{a}\right) + C \] Applying this to our integral: \[ \int \frac{\mathrm{d} x}{\sqrt{1 - 16 x^2}} = \arcsin\left(\frac{x}{4}\right) + C \] But wait, let's double-check this. If I differentiate \( \arcsin\left(\frac{x}{4}\right) \), I should get back the original integrand. The derivative of \( \arcsin(u) \) with respect to \( u \) is \( \frac{1}{\sqrt{1 - u^2}} \), and using the chain rule: \[ \frac{\mathrm{d}}{\mathrm{d} x} \arcsin\left(\frac{x}{4}\right) = \frac{1}{\sqrt{1 - \left(\frac{x}{4}\right)^2}} \cdot \frac{1}{4} = \frac{1}{4 \sqrt{1 - \frac{x^2}{16}}} = \frac{1}{\sqrt{16 - x^2}} = \frac{1}{\sqrt{1 - 16 x^2}} \] Yes, that matches the original integrand. So, the integral evaluates to: \[ \int \frac{\mathrm{d} x}{\sqrt{1 - 16 x^2}} = \arcsin\left(\frac{x}{4}\right) + C \] But let's consider if there's another method to solve this integral to confirm. Perhaps using a substitution involving hyperbolic functions or even a substitution that simplifies the expression differently. However, the inverse sine method seems straightforward and effective here. Alternatively, I could consider completing the square or other algebraic manipulations, but they might not lead to a simpler solution. Given the standard form of the integral, the inverse sine substitution is the most efficient approach. In conclusion, the integral \( \int \frac{\mathrm{d} x}{\sqrt{1-16 x^{2}}} \) evaluates to \( \arcsin\left(\frac{x}{4}\right) + C \), where \( C \) is the constant of integration.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

First up, let’s talk about the beauty of trigonometric integrals! Many integrals involving trigonometric functions can be tackled using various identities, like double angle formulas or Pythagorean identities, which simplify complex expressions into more manageable forms. For example, integrals like \(\int \sin^2 x \cos^2 x \, \mathrm{d}x\) can be transformed using the identity \(\sin^2 x \cos^2 x = \frac{1}{4} \sin^2(2x)\) before integrating! Who knew identities could be so handy? Now, for a practical math tip: always keep an eye out for substitutions! Many problems, especially those involving square roots or rational functions, can be solved much easier with a well-chosen substitution. For instance, in the integral \(\int \frac{\mathrm{d} x}{\sqrt{1-16 x^{2}}}\), using a trigonometric substitution, like \(x = \frac{1}{4} \sin(\theta)\), can simplify the problem significantly by transforming it into something you can integrate more readily. Just remember, a good substitution can turn an intimidating integral into a walk in the park!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad