(3) \( \int \frac{\mathrm{d} x}{\sqrt{1-16 x^{2}}} ;= \) \( \begin{array}{ll}\text { (5) } \int \frac{3 x^{3}+x}{1+x^{4}} \mathrm{~d} x & \text { (4) } \int x^{2}\left(3+2 x^{3}\right)^{\frac{1}{6}} \mathrm{~d} x\end{array} \) \( \begin{array}{ll}\text { (7) } \int \frac{\cos \ln |x|}{x} \mathrm{~d} x & \text { (6) } \int \frac{\sqrt{1+\sqrt{x}}}{\sqrt{x}} \mathrm{~d} x \\ \text { (9) } \int \frac{\cos ^{3} x}{\sin ^{2} x} \mathrm{~d} x & \text { (8) } \int \frac{\ln \ln x}{x \ln x} \mathrm{~d} x(x>e) \\ \text { (11) } \int \sin ^{2} x \cos ^{2} x \mathrm{~d} x & \text { (10) } \int \cos ^{4} x \mathrm{~d} x\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
First up, let’s talk about the beauty of trigonometric integrals! Many integrals involving trigonometric functions can be tackled using various identities, like double angle formulas or Pythagorean identities, which simplify complex expressions into more manageable forms. For example, integrals like \(\int \sin^2 x \cos^2 x \, \mathrm{d}x\) can be transformed using the identity \(\sin^2 x \cos^2 x = \frac{1}{4} \sin^2(2x)\) before integrating! Who knew identities could be so handy? Now, for a practical math tip: always keep an eye out for substitutions! Many problems, especially those involving square roots or rational functions, can be solved much easier with a well-chosen substitution. For instance, in the integral \(\int \frac{\mathrm{d} x}{\sqrt{1-16 x^{2}}}\), using a trigonometric substitution, like \(x = \frac{1}{4} \sin(\theta)\), can simplify the problem significantly by transforming it into something you can integrate more readily. Just remember, a good substitution can turn an intimidating integral into a walk in the park!