(Find \( f+g, f-g, f g \) and \( \frac{f}{g} \). Determine the domain for each function. \( f(x)=5 x+2, g(x)=x-6 \) \( (f+g)(x)=6 x-4 \) (Simplify your answer.) What is the domain of \( f+g \) ? A. The domain of \( f+g \) is \( \square \). (Type your answer in interval notation.) B. The domain of \( f+g \) is \{ \}. (Use a comma to separate answers as needed.) C. The domain of \( f+g \) is \( \varnothing \).
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find \( f + g \), \( f - g \), \( fg \), and \( \frac{f}{g} \): 1. **Calculation of Operations:** - \( (f+g)(x) = f(x) + g(x) = (5x + 2) + (x - 6) = 6x - 4 \) - \( (f-g)(x) = f(x) - g(x) = (5x + 2) - (x - 6) = 4x + 8 \) - \( (fg)(x) = f(x)g(x) = (5x + 2)(x - 6) = 5x^2 - 30x + 2x - 12 = 5x^2 - 28x - 12 \) - \( \left( \frac{f}{g} \right)(x) = \frac{f(x)}{g(x)} = \frac{5x + 2}{x - 6} \) 2. **Domain Determination:** - The domain of \( f(x) \) and \( g(x) \) is all real numbers since they are linear functions. - For \( f + g \), it is also all real numbers as it is a linear combination. - The domain of \( f - g \) is all real numbers (again a linear function). - The domain of \( fg \) is all real numbers as the product of two linear functions. - For \( \frac{f}{g} \), \( g(x) = 0 \) at \( x = 6 \), so the domain is all real numbers except 6. Thus, the domain of \( f + g \) is: A. The domain of \( f + g \) is \( (-\infty, +\infty) \). For \( \frac{f}{g} \): The domain excludes 6: B. The domain of \( \frac{f}{g} \) is \{ x | x ≠ 6 \}.