Pregunta
A particle's velocity function is given by \( v(t) = 3t^{2} - 4t + 2 \). Find the position function if the initial position at time t=0 is 5.
Ask by Hamilton Paul. in the United States
Jan 26,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The position function is \( s(t) = t^{3} - 2t^{2} + 2t + 5 \).
Solución
To find the position function \( s(t) \) given the velocity function \( v(t) = 3t^2 - 4t + 2 \) and the initial condition \( s(0) = 5 \), follow these steps:
1. **Integrate the Velocity Function:**
The position function \( s(t) \) is the integral of the velocity function \( v(t) \) with respect to time \( t \).
\[
s(t) = \int v(t) \, dt = \int (3t^2 - 4t + 2) \, dt
\]
Perform the integration term by term:
\[
s(t) = \int 3t^2 \, dt - \int 4t \, dt + \int 2 \, dt
\]
\[
s(t) = t^3 - 2t^2 + 2t + C
\]
Here, \( C \) is the constant of integration.
2. **Apply the Initial Condition:**
Use the initial condition \( s(0) = 5 \) to solve for \( C \).
\[
s(0) = 0^3 - 2(0)^2 + 2(0) + C = 5
\]
\[
C = 5
\]
3. **Write the Final Position Function:**
Substitute the value of \( C \) back into the expression for \( s(t) \):
\[
s(t) = t^3 - 2t^2 + 2t + 5
\]
**Final Answer:**
\[
s(t) = t^{3} - 2\,t^{2} + 2\,t + 5
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
To find the position function, we can integrate the velocity function \( v(t) = 3t^{2} - 4t + 2 \) with respect to time \( t \). The integral of the velocity function is: \[ s(t) = \int v(t) \, dt = \int (3t^{2} - 4t + 2) \, dt = t^{3} - 2t^{2} + 2t + C \] where \( C \) is the constant of integration. To find \( C \), we use the initial condition that the position at \( t = 0 \) is 5: \[ s(0) = 0^{3} - 2(0)^{2} + 2(0) + C = 5 \implies C = 5 \] Thus, the position function is: \[ s(t) = t^{3} - 2t^{2} + 2t + 5 \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium