Work out the value of \( m \) in the equation below. Give your answer as a decimal. \[ 3(2 m+5)=4(9-m) \]
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
Let's solve the equation step by step. Starting with the equation: \[ 3(2m + 5) = 4(9 - m) \] First, distribute the 3 on the left-hand side and the 4 on the right-hand side: \[ 6m + 15 = 36 - 4m \] Next, we'll get all terms involving \( m \) on one side and the constant terms on the other side. To do this, we can add \( 4m \) to both sides: \[ 6m + 4m + 15 = 36 \] This simplifies to: \[ 10m + 15 = 36 \] Now, subtract 15 from both sides: \[ 10m = 36 - 15 \] This gives: \[ 10m = 21 \] Finally, divide both sides by 10 to find \( m \): \[ m = \frac{21}{10} \] Converting that to a decimal: \[ m = 2.1 \] Thus, the value of \( m \) is \( 2.1 \).