Pregunta
upstudy study bank question image url

24. Cost of Pizras A pizza shop owner wishes to find the \( 95 \% \) confidence interval of the true mean cost of a large plain pizas. How large should the sample be if she wishes to be accurate to within \( \$ 0.15 \) ? A previous study showed that the standard deviation of the price was \( \$ 0.26 \).

Ask by Knight Cummings. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The pizza shop owner should sample 12 large plain pizzas to be 95% confident that the mean cost is within \$0.15 of the true mean.

Solución

To determine the required sample size for a \( 95\% \) confidence interval with a margin of error of \( \$0.15 \), we'll use the following formula: \[ n = \left( \frac{z^* \cdot \sigma}{E} \right)^2 \] Where: - \( z^* \) is the z-score corresponding to the desired confidence level. - \( \sigma \) is the population standard deviation. - \( E \) is the margin of error. **Step-by-Step Calculation:** 1. **Identify the Z-Score for \( 95\% \) Confidence:** - For a \( 95\% \) confidence level, the z-score (\( z^* \)) is approximately **1.96**. 2. **Given Values:** - \( \sigma = \$0.26 \) - \( E = \$0.15 \) 3. **Plug the Values into the Formula:** \[ n = \left( \frac{1.96 \times 0.26}{0.15} \right)^2 \] 4. **Calculate the Numerator:** \[ 1.96 \times 0.26 = 0.5096 \] 5. **Divide by the Margin of Error:** \[ \frac{0.5096}{0.15} \approx 3.3987 \] 6. **Square the Result:** \[ (3.3987)^2 \approx 11.55 \] 7. **Determine the Sample Size:** - Since the sample size must be a whole number, and we can't have a fraction of a sample, we'll round up to ensure the desired confidence level and precision. \[ n \approx 12 \] **Conclusion:** The pizza shop owner should select a sample size of **12** to achieve a \( 95\% \) confidence interval with a margin of error of \( \$0.15 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine the required sample size for the pizza shop owner to achieve a \( 95\% \) confidence interval accurate to within \( \$ 0.15 \), we can use the formula: \[ n = \left( \frac{Z \cdot \sigma}{E} \right)^2 \] Here, \( Z \) is the z-value corresponding to the desired confidence level (for \( 95\% \), \( Z \approx 1.96 \)), \( \sigma \) is the standard deviation ($0.26), and \( E \) is the margin of error ($0.15). Plugging in the values: \[ n = \left( \frac{1.96 \cdot 0.26}{0.15} \right)^2 \approx \left( \frac{0.5096}{0.15} \right)^2 \approx (3.3973)^2 \approx 11.53 \] Since sample size must be a whole number, the owner should round up to \( n = 12 \). Thus, she should gather a sample of at least \( 12 \) large plain pizzas to estimate the mean cost with the desired precision. When it comes to implementing this, it's crucial that the sample of pizzas accurately reflects the typical inventory over a reasonable timeframe. Engaging with customers on different days or during peak hours can help ensure that her sample isn't skewed by occasional pricing anomalies or promotions.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad