Bumper car \( 1(281 \mathrm{~kg}) \) moves east at \( 2.82 \mathrm{~m} / \mathrm{s} \). Bumper car \( 2(209 \mathrm{~kg} \) ) moves west at \( 1.72 \mathrm{~m} / \mathrm{s} \). If the cars have an elastic collision, what would the velocity of car 2 be afterwards? \[ \mathrm{v}_{2 \mathrm{f}}=[?] \mathrm{m} / \mathrm{s} \] Remember: East is positive \( (\mathrm{t}) \); west is negative \( (-) \).
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To solve for the final velocity of bumper car 2 after an elastic collision, we can use the conservation of momentum and the conservation of kinetic energy principles. ### Step 1: Conservation of Momentum The formula for conservation of momentum is: \[ m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f} \] Where: - \( m_1 = 281 \, \text{kg} \) (mass of car 1) - \( v_{1i} = 2.82 \, \text{m/s} \) (initial velocity of car 1) - \( m_2 = 209 \, \text{kg} \) (mass of car 2) - \( v_{2i} = -1.72 \, \text{m/s} \) (initial velocity of car 2, negative because it moves west) ### Step 2: Conservation of Kinetic Energy The formula for conservation of kinetic energy is: \[ \frac{1}{2} m_1 v_{1i}^2 + \frac{1}{2} m_2 v_{2i}^2 = \frac{1}{2} m_1 v_{1f}^2 + \frac{1}{2} m_2 v_{2f}^2 \] ### Step 3: Solving for Final Velocities Using both equations together and simplifying will yield the final velocities. After carrying out the calculations (omitting intermediary steps for brevity): The final velocity of car 2, \( v_{2f} \), is approximately \( 3.24 \, \text{m/s} \) to the east. ### Answer: \[ \mathrm{v}_{2 \mathrm{f}} \approx 3.24 \, \mathrm{m/s} \]