Prove that the half-angle identity for tangent can be expressed as \( \tan \left(\frac{x}{2}\right) = \frac{1 - \cos x}{\sin x} \) starting from the definitions of sine and cosine.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To prove the half-angle identity for tangent, we start with the definitions of sine and cosine in terms of the angle. From the double angle formulas, we know: \[ \cos x = \cos^2\left(\frac{x}{2}\right) - \sin^2\left(\frac{x}{2}\right) \] and \[ \sin x = 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right). \] Now, let's express \(\tan\left(\frac{x}{2}\right)\): \[ \tan\left(\frac{x}{2}\right) = \frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)}. \] Now, we need to manipulate the expression \(\frac{1 - \cos x}{\sin x}\). First, we will substitute our earlier expressions: 1. Substitute for \(\sin x\): \[ \sin x = 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right). \] 2. So, we rewrite \(\frac{1 - \cos x}{\sin x}\): \[ \frac{1 - \cos x}{\sin x} = \frac{1 - \left(\cos^2\left(\frac{x}{2}\right) - \sin^2\left(\frac{x}{2}\right)\right)}{2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)} = \frac{1 - \cos^2\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right)}{2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)}. \] 3. Now, recall that \(1 = \cos^2\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right)\). Thus we have: \[ 1 - \cos x = 1 - \left(\cos^2\left(\frac{x}{2}\right) - \sin^2\left(\frac{x}{2}\right)\right) = 1 - \cos^2\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right) = \sin^2\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right). \] 4. Simplifying gives: \[ = 2\sin^2\left(\frac{x}{2}\right), \] 5. Therefore, substituting back into our main equation gives us: \[ \frac{2\sin^2\left(\frac{x}{2}\right)}{2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)} = \frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)} = \tan\left(\frac{x}{2}\right). \] Hence, we have successfully shown that: \[ \tan\left(\frac{x}{2}\right) = \frac{1 - \cos x}{\sin x}, \] proving the half-angle identity for tangent!