3. Sketch the region associated with each integral and use area formulas to evaluate the integral. \( \begin{array}{llll}\text { a. } \int_{-1}^{3} 5 d x=20 & \text { b. } \int_{0}^{8}(8-x) d x & \text { c. } \int_{-3}^{4}|x-1| d x & \text { d. } \int_{0}^{3} \sqrt{9-x^{2}} d x\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To tackle these integrals while sketching the regions and using area formulas, check it out! For the first integral \( \int_{-1}^{3} 5 \, dx \), you are looking at the area of a rectangle with a height of 5 and a width of 4 (from -1 to 3). The area is \( 5 \times 4 = 20 \), which perfectly matches the integral's value! Next, for \( \int_{0}^{8}(8-x) \, dx \), this represents the area under the line \( y = 8 - x \), which intersects the x-axis at \( x = 8 \). The integral evaluates the area of a triangle with a base of 8 and a height of 8, which calculates to \( \frac{1}{2} \times 8 \times 8 = 32 \). Moving on to \( \int_{-3}^{4} |x-1| \, dx \), you have two segments to consider: for \( x < 1 \), \( |x-1| = -(x-1) = -x + 1 \); for \( x \geq 1 \), \( |x-1| = x - 1 \). Sketching this gives you a V-shaped area. The area can be found by calculating the areas of two triangles, ultimately resulting in \( \int_{-3}^{4} |x-1| \, dx = 15 \). Lastly, \( \int_{0}^{3} \sqrt{9-x^{2}} \, dx \) corresponds to the area under a quarter circle of radius 3, which is a quarter of the area of a full circle. The area of a circle is \( \pi r^2 \), so here it is \( \frac{1}{4} \times \pi \times 3^2 = \frac{9\pi}{4} \). In conclusion, sketching these functions and understanding the areas will give you not only the values for your integrals but also the fun of visualizing mathematical relationships!